hdu 4718 The LCIS on the Tree
The LCIS on the Tree
Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 65535/65535 K (Java/Others)
Total Submission(s): 528 Accepted Submission(s): 165
Problem Description
For a sequence S1, S2, ... , SN, and a pair of integers (i, j), if 1 <= i <= j <= N and Si < Si+1 < Si+2 < ... < Sj-1 < Sj , then the sequence Si, Si+1, ... , Sj is a CIS(Continuous Increasing Subsequence). The longest CIS of a sequence is called the LCIS (Longest Continuous Increasing Subsequence).
Now we consider a tree rooted at node 1. Nodes have values. We have Q queries, each with two nodes u and v. You have to find the shortest path from u to v. And write down each nodes' value on the path, from u to v, inclusive. Then you will get a sequence, and please show us the length of its LCIS.
Now we consider a tree rooted at node 1. Nodes have values. We have Q queries, each with two nodes u and v. You have to find the shortest path from u to v. And write down each nodes' value on the path, from u to v, inclusive. Then you will get a sequence, and please show us the length of its LCIS.
Input
The first line has a number T (T <= 10) , indicating the number of test cases.
For each test case, the first line is a number N (N <= 105), the number of nodes in the tree.
The second line comes with N numbers v1, v2, v3 ... , vN, describing the value of node 1 to node N. (1 <= vi <= 109)
The third line comes with N - 1 numbers p2, p3, p4 ... , pN, describing the father nodes of node 2 to node N. Node 1 is the root and will have no father.
Then comes a number Q, it is the number of queries. (Q <= 105)
For next Q lines, each with two numbers u and v. As described above.
For each test case, the first line is a number N (N <= 105), the number of nodes in the tree.
The second line comes with N numbers v1, v2, v3 ... , vN, describing the value of node 1 to node N. (1 <= vi <= 109)
The third line comes with N - 1 numbers p2, p3, p4 ... , pN, describing the father nodes of node 2 to node N. Node 1 is the root and will have no father.
Then comes a number Q, it is the number of queries. (Q <= 105)
For next Q lines, each with two numbers u and v. As described above.
Output
For test case X, output "Case #X:" at the first line.
Then output Q lines, each with an answer to the query.
There should be a blank line *BETWEEN* each test case.
Then output Q lines, each with an answer to the query.
There should be a blank line *BETWEEN* each test case.
Sample Input
1
5
1 2 3 4 5
1 1 3 3
3
1 5
4 5
2 5
Sample Output
Case #1:
3
2
3
Source
题意:给你一棵树,每个点都有一个权值,每个询问 u v
求 u 到 v 路径上节点权值序列的最长上升子序列
思路:数链剖分,线段树维护左到右的最长上升子序列,和右到左的最长上升子序列,
合并注意点就好了。。
#include<iostream> #include<cstdio> #include<cstring> #include<algorithm> #include<cmath> #include<queue> #include<vector> #include<set> #include<stack> #include<map> #include<ctime> #include<bitset> #define LL long long #define ll long long #define INF 0x3f3f3f3f #define maxn 100010 #define eps 1e-6 #define mod 1000000007 using namespace std; struct node { int ls,rs,lmax,rmax,max1,max2; int len,Lmax,Rmax; void init() { ls=rs=lmax=rmax=0; max1=max2=Lmax=Rmax=0; len=0; } }tree[maxn*3]; int head[maxn],to[maxn*2],next1[maxn*2] ; int tot,val[maxn],fa[maxn],top[maxn]; int dep[maxn],son[maxn],w[maxn]; int sz,ql,qr,n; node v; node Unit(node &a,node &b) { node ans; ans.len=a.len+b.len ; ans.ls=a.ls ; ans.rs=b.rs ; ans.max1=max(a.max1,b.max1) ; ans.max2=max(a.max2,b.max2) ; if(a.rs < b.ls ) { if(a.lmax==a.len) ans.lmax = a.lmax+b.lmax ; else ans.lmax=a.lmax; ans.max1=max(ans.max1,a.rmax+b.lmax) ; if(b.rmax==b.len) ans.rmax = a.rmax+b.rmax ; else ans.rmax=b.rmax; } else { ans.lmax = a.lmax ; ans.rmax = b.rmax ; } if(b.ls < a.rs ) { if(a.Lmax==a.len) ans.Lmax = a.Lmax+b.Lmax ; else ans.Lmax=a.Lmax; ans.max2=max(ans.max2,a.Rmax+b.Lmax) ; if(b.Rmax == b.len) ans.Rmax = a.Rmax+b.Rmax ; else ans.Rmax=b.Rmax; } else { ans.Lmax = a.Lmax ; ans.Rmax = b.Rmax ; } return ans; } void Unit(int u,int v) { to[tot]=v;next1[tot]=head[u]; head[u]=tot++; } void dfs(int u,int f) { son[u]=0;w[u]=1; int i,v; for( i = head[u] ; i != -1; i = next1[i]) { v = to[i] ; if(v==f) continue ; fa[v]=u; dep[v]=dep[u]+1; dfs(v,u) ; if(w[v]>w[son[u]]) son[u]=v; w[u] += w[v] ; } } void build(int u,int f,int t) { w[u]=++sz ; top[u]=t; if(son[u])build(son[u],u,t) ; for( int i = head[u] ; i != -1 ; i = next1[i]) if(son[u] != to[i]&&f != to[i]) build(to[i],u,to[i]) ; } void init(int L,int R,int o) { if(L==R) { tree[o].ls=tree[o].rs=son[L] ; tree[o].len=tree[o].max1=tree[o].max2=1; tree[o].lmax=tree[o].Lmax=1; tree[o].Rmax=tree[o].rmax = 1; return ; } int mid=(L+R)>>1; init(L,mid,o<<1) ; init(mid+1,R,o<<1|1) ; tree[o]=Unit(tree[o<<1],tree[o<<1|1]) ; } void find(int L,int R,int o) { if(ql<=L&&qr>=R) { if(v.max1==0)v=tree[o] ; else v = Unit(v,tree[o]) ; return ; } int mid=(L+R)>>1 ; if(ql<=mid) find(L,mid,o<<1) ; if(qr>mid) find(mid+1,R,o<<1|1); } int solve(int u,int vv) { int f1,f2; node v1,v2; v1.init(); v2.init(); f1=top[u]; f2=top[vv]; while(f1 != f2) { if(dep[f1]>dep[f2]) { ql=w[f1]; qr=w[u] ; v.init(); find(1,sz,1) ; if(v1.max1==0) v1=v; else v1=Unit(v,v1) ; u=fa[f1]; f1=top[u]; } else{ ql=w[f2]; qr=w[vv] ; v.init(); find(1,sz,1) ; if(v2.max1==0) v2=v; else v2=Unit(v,v2) ; vv=fa[f2] ; f2=top[vv] ; } } int ans=0; if(u==vv&&0){ ans=max(v1.max2,v2.max1); if(v1.ls < v2.ls) { ans=max(ans,v1.Lmax+v2.lmax) ; } return ans; } else { if(dep[u]>dep[vv]) { ql=w[vv]; qr=w[u]; v.init(); find(1,sz,1) ; if(v1.max1==0)v1=v; else v1=Unit(v,v1) ; } else { ql=w[u]; qr=w[vv]; v.init(); find(1,sz,1) ; if(v2.max1==0)v2=v; else v2=Unit(v,v2) ; } } ans=max(v1.max2,v2.max1); if(v1.ls < v2.ls) { ans=max(ans,v1.Lmax+v2.lmax) ; } return ans; } int main() { int i,m,k,case1=0; int j ,T,x,y ; // freopen("in.txt","r",stdin); // freopen("yy.txt","w",stdout); bool hehe=false; cin >> T ; while(T--) { if(hehe)puts("") ; hehe=true; scanf("%d",&n) ; for( i =1 ; i <= n ;i++) scanf("%d",&val[i]) ; tot=0; memset(head,-1,sizeof(head)) ; for( i = 2 ; i <= n ;i++) { scanf("%d",&k) ; Unit(k,i) ; Unit(i,k) ; } dep[1]=0; fa[1]=1; sz=0; dfs(1,-1) ; build(1,-1,1) ; for( i = 1 ; i <= n ;i++) { son[w[i]]=val[i] ; } init(1,sz,1) ; scanf("%d",&m) ; printf("Case #%d:\n",++case1); while(m--) { scanf("%d%d",&x,&y) ; printf("%d\n",solve(x,y)) ; } } return 0 ; }