TensorFlow-Slim image classification model library
TF-slim is a new lightweight high-level API of TensorFlow (tensorflow.contrib.slim
) for defining, training and evaluating complex models. This directory contains code for training and evaluating several widely used Convolutional Neural Network (CNN) image classification models using TF-slim. It contains scripts that will allow you to train models from scratch or fine-tune them from pre-trained network weights. It also contains code for downloading standard image datasets, converting them to TensorFlow's native TFRecord format and reading them in using TF-Slim's data reading and queueing utilities. You can easily train any model on any of these datasets, as we demonstrate below. We've also included a jupyter notebook, which provides working examples of how to use TF-Slim for image classification. For developing or modifying your own models, see also the main TF-Slim page.
Tensorflow2.0变动之一就是弃用了tf.contrib。。
但是有时候需要在tensorflow2.0里使用slim。
那么这个问题该如何解决?
在 https://github.com/tensorflow/models/issues/8020 中
在tensorflow2.0中没有slim有什么替代方案吗?
要在TF2中以兼容的模式使用,你需要把它当作一个包来安装。
安装方式:
1. Download Zip。然后,python setup.py install
使用方法:
跟原来有一点不同
#import tensorflow as tf
import tensorflow.compat.v1 as tf
#from tensorflow.contrib.slim.nets import vgg
import tf_slim as slim
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 理解Rust引用及其生命周期标识(上)
· 浏览器原生「磁吸」效果!Anchor Positioning 锚点定位神器解析
· 没有源码,如何修改代码逻辑?
· 分享4款.NET开源、免费、实用的商城系统
· 全程不用写代码,我用AI程序员写了一个飞机大战
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· 白话解读 Dapr 1.15:你的「微服务管家」又秀新绝活了
· 上周热点回顾(2.24-3.2)