求逆序对即可,然而发现还是bit容易写。。
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Ultra-QuickSort
Time Limit: 7000MS | Memory Limit: 65536K | |
Total Submissions: 49549 | Accepted: 18142 |
Description
In this problem, you have to analyze a particular sorting algorithm. The algorithm processes a sequence of n distinct integers by swapping two adjacent sequence elements until the sequence is sorted in ascending order. For the input sequence
9 1 0 5 4 ,
Ultra-QuickSort produces the output
0 1 4 5 9 .
Your task is to determine how many swap operations Ultra-QuickSort needs to perform in order to sort a given input sequence.
Ultra-QuickSort produces the output
Your task is to determine how many swap operations Ultra-QuickSort needs to perform in order to sort a given input sequence.
Input
The input contains several test cases. Every test case begins with a line that contains a single integer n < 500,000 -- the length of the input sequence. Each of the the following n lines contains a single integer 0 ≤ a[i] ≤ 999,999,999, the i-th input sequence element. Input is terminated by a sequence of length n = 0. This sequence must not be processed.
Output
For every input sequence, your program prints a single line containing an integer number op, the minimum number of swap operations necessary to sort the given input sequence.
Sample Input
5 9 1 0 5 4 3 1 2 3 0
Sample Output
6 0
Source
1 #include<cstdio> 2 #include<cstring> 3 #include<algorithm> 4 using namespace std; 5 #define ll long long 6 #define rep(i,n) for(int i=1;i<=n;i++) 7 struct data{ 8 ll w;int c; 9 bool operator<(const data&rhs)const { 10 return w<rhs.w;} 11 }e[500005]; 12 int t[500005],n; 13 int lowbit(int x){return x&-x;} 14 void insert(int x){ 15 for(int i=x;i<=n;i+=lowbit(i)) 16 t[i]++; 17 } 18 int find(int x){ 19 int tmp=0; 20 for(int i=x;i;i-=lowbit(i)) 21 tmp+=t[i]; 22 return tmp; 23 } 24 int main(){ 25 while(scanf("%d",&n)&&n){ 26 memset(t,0,sizeof(t)); 27 rep(i,n){ 28 scanf("%lld",&e[i].w); 29 e[i].c=i; 30 } 31 sort(e+1,e+n+1); 32 ll ans=0; 33 rep(i,n){ 34 insert(e[i].c); 35 ans+=i-find(e[i].c); 36 } 37 printf("%lld\n",ans); 38 } 39 return 0; 40 }