实验6:Mapreduce实例——WordCount
- 启动hadoop。
Start-dfs.sh
- 创建在系统中创建一个的TXT文件,并将上面的数据包复制到文件中
- 将写好的文件从本地上传到hadoop上
(1)进入hadoop目录
(2)上传文件
- 在eclipse中创建MapReduce程序命名为count,然后导入相关的jar包
然后还需要导入三个配置文件:其中log4j.properties是一个日志文件,如果没有这个文件程序就不会正常运行
代码:WordCount java
package test6; import java.io.IOException; import java.util.StringTokenizer; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; public class WordCount { public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException { Job job = Job.getInstance(); job.setJobName("WordCount"); job.setJarByClass(WordCount.class); job.setMapperClass(doMapper.class); job.setReducerClass(doReducer.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(IntWritable.class); Path in = new Path("hdfs://192.168.43.102:9000/user/hadoop/input/mapReduceTest2.txt"); Path out = new Path("hdfs://192.168.43.102:9000/user/hadoop/output5"); FileInputFormat.addInputPath(job, in); FileOutputFormat.setOutputPath(job, out); System.exit(job.waitForCompletion(true) ? 0 : 1); } public static class doMapper extends Mapper<Object, Text, Text, IntWritable>{ public static final IntWritable one = new IntWritable(1); public static Text word = new Text(); @Override protected void map(Object key, Text value, Context context) throws IOException, InterruptedException { StringTokenizer tokenizer = new StringTokenizer(value.toString(), " "); word.set(tokenizer.nextToken()); context.write(word, one); } } public static class doReducer extends Reducer<Text, IntWritable, Text, IntWritable>{ private IntWritable result = new IntWritable(); @Override protected void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException { int sum = 0; for (IntWritable value : values) { sum += value.get(); } result.set(sum); context.write(key, result); } } }
实验结果: