bzoj3836

状压dp

图上怎么跑dp?我们跑三进制状压dp,0表示选了,1表示既没选也没覆盖,2表示没选但是被覆盖了。

状态是dp[dep][S]表示当前走到了深度为dep的节点,状态为S,按照dfs序转移

每次转移就是计算这个点选了没选,然后像树形dp一样更新节点

返祖边也要处理

#include<bits/stdc++.h>
using namespace std;
const int N = 5e4 + 5;
int n, m, ans;
vector<int> G[N];
int dp[11][N], c[N], vis[N], bin[11], st[N], d[N];
inline int rd()
{
    int x = 0, f = 1; char c = getchar();
    while(c < '0' || c > '9') { if(c == '-') f = -1; c = getchar(); }
    while(c >= '0' && c <= '9') { x = x * 10 + c - '0'; c = getchar(); }
    return x * f;
} 
int bit(int S, int t)
{
    return S / bin[t] % 3;
}
void dfs(int u, int dep)
{
    vis[u] = 1;
    d[u] = dep;
    if(!dep) 
    {
        dp[0][0] = c[u];
        dp[0][1] = 0;
        dp[0][2] = 1e9;
    }
    else
    {
        int top = 0;
        for(int i = 0; i < G[u].size(); ++i) 
        {
            int v = G[u][i];
            if(d[v] < d[u] && vis[v]) st[++top] = d[v];
        }
        for(int i = 0; i < bin[dep + 1]; ++i) dp[dep][i] = 1e9;
        for(int i = 0; i < bin[dep]; ++i) 
        {
            int U = 1, V = i;
            for(int j = 1; j <= top; ++j) if(bit(i, st[j]) == 0) U = 2; else if(bit(i, st[j]) == 1) V += bin[st[j]];
            dp[dep][i + U * bin[dep]] = min(dp[dep][i + U * bin[dep]], dp[dep - 1][i]);
            dp[dep][V] = min(dp[dep][V], dp[dep - 1][i] + c[u]);
        }
    }
    for(int i = 0; i < G[u].size(); ++i)
    {
        int v = G[u][i];
        if(vis[v]) continue;
        dfs(v, dep + 1);
        for(int j = 0; j < bin[dep + 1]; ++j) dp[dep][j] = min(dp[dep + 1][j], dp[dep + 1][j + 2 * bin[dep + 1]]);
    }
}
int main()
{
    n = rd();
    m = rd();
    bin[0] = 1;
    for(int i = 1; i <= 10; ++i) bin[i] = bin[i - 1] * 3;
    for(int i = 1; i <= n; ++i) c[i] = rd();
    for(int i = 1; i <= m; ++i) 
    {
        int u = rd(), v = rd();
        G[u].push_back(v);
        G[v].push_back(u);
    }
    for(int i = 1; i <= n; ++i) if(!vis[i]) 
    {
        dfs(i, 0);
        ans += min(dp[0][0], dp[0][2]);
    }
    printf("%d\n", ans);
    return 0;
}
View Code

 

posted @ 2017-11-29 21:19  19992147  阅读(113)  评论(0编辑  收藏  举报