bzoj2780
AC自动机+树链剖分+线段树/树状数组+dfs序+树链的并
题意:给出n个母串和q个询问串,对于每个询问串输出有多少个母串包含这个询问串 N=∑|母串|<=10^5 Q=∑|询问串|<=3.6*10^5
由于是母串包含询问串,那么我们就对询问串建自动机,然后用母串在上面跑,跑一次的复杂度是母串的长度(不确定)
利用fail树的性质求解,每次母串跑到一个节点,就把这个节点到根的路径都加上1,说明母串当前匹配单词的一段后缀包含某个前缀,也就是母串包含某个前缀
由于是求出现次数,那么询问串多次出现在母串里只算一次,所以之前到根的路径上加重了,所以我们利用树链的并去重,将节点按dfs序排序,相邻两个节点的lca到根的路径-1,这样就使得每个节点到根的路径都等于1
然后就真写了一个树链剖分+单点查询,其实直接查子树就行了,直接在节点上打上+1标记,lca上打上-1标记,树状数组维护子树和就行了
#include<bits/stdc++.h> using namespace std; const int N = 400010; int n, q; vector<char> v[N]; char s[N]; struct ac_automation { int root, cnt, tot, dfs_clock; int child[N][27], fail[N], top[N], fa[N], son[N], dep[N], size[N], dfn[N], mir[N], tree[N << 2], pos[N], tag[N << 2]; vector<int> G[N], p; void insert(char s[], int id) { int len = strlen(s), now = root; for(int i = 0; i < len; ++i) { int t = s[i] - 'a'; if(child[now][t] == 0) child[now][t] = ++cnt; now = child[now][t]; } pos[id] = now; } void build_fail() { queue<int> q; for(int i = 0; i < 26; ++i) if(child[root][i]) { q.push(child[root][i]); G[root].push_back(child[root][i]); } while(!q.empty()) { int u = q.front(); q.pop(); for(int i = 0; i < 26; ++i) { int &v = child[u][i]; if(v == 0) v = child[fail[u]][i]; else { fail[v] = child[fail[u]][i]; q.push(v); G[child[fail[u]][i]].push_back(v); } } } } int lca(int u, int v) { while(top[u] != top[v]) { if(dep[top[u]] < dep[top[v]]) swap(u, v); u = fa[top[u]]; } return dep[u] < dep[v] ? u : v; } void dfs(int u) { size[u] = 1; for(int i = 0; i < G[u].size(); ++i) { int v = G[u][i]; dep[v] = dep[u] + 1; fa[v] = u; dfs(v); size[u] += size[v]; if(size[v] >= size[son[u]]) son[u] = v; } } void dfs(int u, int acs) { dfn[u] = ++dfs_clock; mir[dfn[u]] = u; top[u] = acs; if(son[u]) dfs(son[u], acs); for(int i = 0; i < G[u].size(); ++i) { int v = G[u][i]; if(v == son[u]) continue; dfs(v, v); } } void pushdown(int x, int l, int r) { if(tag[x] == 0) return; int mid = (l + r) >> 1; tag[x << 1] += tag[x]; tag[x << 1 | 1] += tag[x]; tree[x << 1] += tag[x] * (mid - l + 1); tree[x << 1 | 1] += tag[x] * (r - mid); tag[x] = 0; } int query(int l, int r, int x, int pos) { if(l == r) return tree[x]; pushdown(x, l, r); int mid = (l + r) >> 1; if(pos <= mid) return query(l, mid, x << 1, pos); else return query(mid + 1, r, x << 1 | 1, pos); } void update(int l, int r, int x, int a, int b, int delta) { if(l > b || r < a) return; if(l >= a && r <= b) { tag[x] += delta; tree[x] += (r - l + 1) * delta; return; } pushdown(x, l, r); int mid = (l + r) >> 1; update(l, mid, x << 1, a, b, delta); update(mid + 1, r, x << 1 | 1, a, b, delta); tree[x] = tree[x << 1] + tree[x << 1 | 1]; } void change(int u, int delta) { while(top[u]) { update(1, cnt + 1, 1, dfn[top[u]], dfn[u], delta); u = fa[top[u]]; } update(1, cnt + 1, 1, 1, dfn[u], delta); } void put_string(int id) { int len = v[id].size(), now = root; p.clear(); for(int i = 0; i < len; ++i) { now = child[now][v[id][i] - 'a']; p.push_back(dfn[now]); } sort(p.begin(), p.end()); p.erase(unique(p.begin(), p.end()), p.end()); for(int i = 0; i < p.size(); ++i) { int u = p[i]; change(mir[u], 1); } for(int i = 1; i < p.size(); ++i) { int u = p[i], v = p[i - 1]; change(lca(mir[u], mir[v]), -1); } } int ask(int id) { return query(1, cnt + 1, 1, dfn[pos[id]]); } } ac; int main() { scanf("%d%d", &n, &q); for(int i = 1; i <= n; ++i) { scanf("%s", s); int len = strlen(s); for(int j = 0; j < len; ++j) v[i].push_back(s[j]); } for(int i = 1; i <= q; ++i) { scanf("%s", s); ac.insert(s, i); } ac.build_fail(); ac.dfs(0); ac.dfs(0, 0); for(int i = 1; i <= n; ++i) ac.put_string(i); for(int i = 1; i <= q; ++i) printf("%d\n", ac.ask(i)); return 0; }