bzoj4821

线段树

这题真是无聊

把式子拆开,然后可知维护xi,yi,xi^2,xi*yi,重点在于标记下传,当我们进行2号操作时,直接累加进答案和标记即可,进行3号操作时,update时先把自己这层赋值成要改变的值,再清空这层2号标记,每次pushdown把这层的下一层的标记清空,因为下一层被覆盖了,pushdown先执行3号标记,再执行2号标记,因为存在的2号标记肯定在3号标记后打的,否则肯定会被清空,所以2号标记应该在三号标记后。

而下一层的2号标记肯定是在三号标记之前打的,因为标记已经下传。

#include<bits/stdc++.h>
using namespace std;
typedef double ld;
const int N = 100010;
int n, m;
ld x[N], y[N];
struct node {
    double sumx, sumy, sumxx, sumxy;
    node(ld sumx = 0, ld sumy = 0, ld sumxx = 0, ld sumxy = 0) : sumx(sumx), sumy(sumy), sumxx(sumxx), sumxy(sumxy) {}
    void print()
    {
        printf("sumx=%.10f sumy=%.10f sumxx=%.10f sumxy=%.10f\n", sumx, sumy, sumxx, sumxy);
    }
};
struct seg {
    node tree[N << 2];
    ld tagx2[N << 2], tagy2[N << 2], tagx3[N << 2], tagy3[N << 2];
    bool can1[N << 2], can2[N << 2];
    ld calc(ld x)
    {
        return (ld)x * (ld)(x + 1) * (ld)(2 * x + 1) / 6;
    }
    void pushdown(int o, int l, int r)
    {
        int mid = (l + r) >> 1;
        if(can1[o])
        {
            tree[o << 1].sumx = (ld)(mid - l + 1) * tagx3[o] + (ld)(mid + l) * (ld)(mid - l + 1) / 2.0;  
            tree[o << 1 | 1].sumx = (ld)(r - mid) * tagx3[o] + (ld)(r + mid + 1) * (ld)(r - mid) / 2.0;
            tree[o << 1].sumy = (ld)(mid - l + 1) * tagy3[o] + (ld)(mid + l) * (ld)(mid - l + 1) / 2.0;  
            tree[o << 1 | 1].sumy = (ld)(r - mid) * tagy3[o] + (ld)(r + mid + 1) * (ld)(r - mid) / 2.0;
            tree[o << 1].sumxx = calc(tagx3[o] + mid) - calc(tagx3[o] + l - 1);
            tree[o << 1 | 1].sumxx = calc(tagx3[o] + r) - calc(tagx3[o] + mid);
            tree[o << 1].sumxy = (ld)(mid - l + 1) * tagx3[o] * tagy3[o] + (ld)(tagx3[o] + tagy3[o]) * (ld)(mid + l) * (ld)(mid - l + 1) / 2.0 + calc(mid) - calc(l - 1);    
            tree[o << 1 | 1].sumxy = (ld)(r - mid) * tagx3[o] * tagy3[o] + (ld)(tagx3[o] + tagy3[o]) * (ld)(r + mid + 1) * (ld)(r - mid) / 2.0 + calc(r) - calc(mid);
            tagx3[o << 1] = tagx3[o << 1 | 1] = tagx3[o];
            tagy3[o << 1] = tagy3[o << 1 | 1] = tagy3[o];
            tagx3[o] = tagy3[o] = 0;
            tagx2[o << 1] = tagx2[o << 1 | 1] = tagy2[o << 1] = tagy2[o << 1 | 1] = 0;
            can2[o << 1] = can2[o << 1 | 1] = 0;
            can1[o << 1] = can1[o << 1 | 1] = can1[o];
            can1[o] = 0;
        }
        if(can2[o])
        {
            tree[o << 1].sumxx += 2.0 * tree[o << 1].sumx * tagx2[o] + (ld)(mid - l + 1) * tagx2[o] * tagx2[o];
            tree[o << 1 | 1].sumxx += 2.0 * tree[o << 1 | 1].sumx * tagx2[o] + (ld)(r - mid) * tagx2[o] * tagx2[o];
            tree[o << 1].sumxy += tree[o << 1].sumx * tagy2[o] + tree[o << 1].sumy * tagx2[o] + (ld)(mid - l + 1) * tagx2[o] * tagy2[o];
            tree[o << 1 | 1].sumxy += tree[o << 1 | 1].sumx * tagy2[o] + tree[o << 1 | 1].sumy * tagx2[o] + (ld)(r - mid) * tagx2[o] * tagy2[o];
            tree[o << 1].sumx += tagx2[o] * (ld)(mid - l + 1);
            tree[o << 1 | 1].sumx += tagx2[o] * (ld)(r - mid); 
            tree[o << 1].sumy += tagy2[o] * (ld)(mid - l + 1);
            tree[o << 1 | 1].sumy += tagy2[o] * (ld)(r - mid);
            tagx2[o << 1] += tagx2[o];
            tagx2[o << 1 | 1] += tagx2[o];
            tagy2[o << 1] += tagy2[o];
            tagy2[o << 1 | 1] += tagy2[o];
            tagx2[o] = 0;
            tagy2[o] = 0; 
            can2[o << 1] = can2[o << 1 | 1] = can2[o];
            can2[o] = 0;
        }        
    }
    node merge(node B, node C)
    {
        node A;
        A.sumx = B.sumx + C.sumx;
        A.sumy = B.sumy + C.sumy;
        A.sumxx = B.sumxx + C.sumxx;
        A.sumxy = B.sumxy + C.sumxy;
        return A;
    }
    void build(int l, int r, int o)
    {
        if(l == r)
        {
            tree[o] = node(x[l], y[l], x[l] * x[l], x[l] * y[l]);            
            return;
        }
        int mid = (l + r) >> 1;
        build(l, mid, o << 1);
        build(mid + 1, r, o << 1 | 1);
        tree[o] = merge(tree[o << 1], tree[o << 1 | 1]);
    }
    node query(int l, int r, int o, int a, int b)
    {
        if(l > b || r < a) return tree[0];
        if(l >= a && r <= b) return tree[o];
        int mid = (l + r) >> 1;
        pushdown(o, l, r);
        node tx = query(l, mid, o << 1, a, b), ty = query(mid + 1, r, o << 1 | 1, a, b);
        return merge(tx, ty);
    }
    void update2(int l, int r, int o, int a, int b, ld s, ld t)
    {
        if(l > b || r < a) return;
        if(l >= a && r <= b)
        {
            tagx2[o] += s;
            tagy2[o] += t;
            tree[o].sumxx += 2.0 * tree[o].sumx * s + (ld)(r - l + 1) * s * s;
            tree[o].sumxy += t * tree[o].sumx + s * tree[o].sumy + (ld)(r - l + 1) * s * t;         
            tree[o].sumx += (ld)(r - l + 1) * s;
            tree[o].sumy += (ld)(r - l + 1) * t;
            can2[o] = 1;
            return;
        }
        pushdown(o, l, r);
        int mid = (l + r) >> 1;
        update2(l, mid, o << 1, a, b, s, t);
        update2(mid + 1, r, o << 1 | 1, a, b, s, t);
        tree[o] = merge(tree[o << 1], tree[o << 1 | 1]);
    }
    void update3(int l, int r, int o, int a, int b, ld s, ld t)
    {
        if(l > b || r < a) return;
        if(l >= a && r <= b)
        {
            tagx3[o] = s;
            tagy3[o] = t;
            tagx2[o] = tagy2[o] = 0;
            tree[o].sumx = (ld)(r - l + 1) * s + (ld)(l + r) * (ld)(r - l + 1) / 2.0; 
            tree[o].sumy = (ld)(r - l + 1) * t + (ld)(l + r) * (ld)(r - l + 1) / 2.0;
            tree[o].sumxx = calc(s + r) - calc(s + l - 1);
            tree[o].sumxy = (ld)(r - l + 1) * s * t + ((ld)(l + r) * (ld)(r - l + 1) / 2.0) * (ld)(s + t) + calc(r) - calc(l - 1);
            can1[o] = 1;
            can2[o] = 0;
            return;
        }
        pushdown(o, l, r);
        int mid = (l + r) >> 1;
        update3(l, mid, o << 1, a, b, s, t);
        update3(mid + 1, r, o << 1 | 1, a, b, s, t);
        tree[o] = merge(tree[o << 1], tree[o << 1 | 1]);        
    }
} t;
int main()
{
    scanf("%d%d", &n, &m);
    for(int i = 1; i <= n; ++i)
        scanf("%lf", &x[i]);
    for(int i = 1; i <= n; ++i)
        scanf("%lf", &y[i]);
    t.build(1, n, 1);
    for(int i = 1; i <= m; ++i)
    {
        int opt, l, r;
        ld S, T;
        scanf("%d", &opt);
        if(opt == 1)
        {
            scanf("%d%d", &l, &r);
            node o = t.query(1, n, 1, l, r);
            ld ox = o.sumx / (ld)(r - l + 1), oy =  o.sumy / (ld)(r - l + 1);
            ld up = ((ld)(r - l + 1) * o.sumxy - o.sumx * o.sumy), down = ((ld)(r - l + 1) * o.sumxx - o.sumx * o.sumx), ans = up / down; 
            printf("%.10f\n", ans);
        }
        if(opt == 2)
        {
            scanf("%d%d%lf%lf", &l, &r, &S, &T);
            t.update2(1, n, 1, l, r, S, T);
        }
        if(opt == 3)
        {
            scanf("%d%d%lf%lf", &l, &r, &S, &T);
            t.update3(1, n, 1, l, r, S, T);
        }
    }
    return 0;
}
View Code

 

posted @ 2017-07-23 08:13  19992147  阅读(126)  评论(0编辑  收藏  举报