Codeforces 1270E

我们把所有点分成四类

$A_{0,0},A_{0,1},A_{1,0},A_{1,1}$

发现如果$A_{0,0}+A_{1,1} > 0$并且$A_{0,1}+A_{1,0} > 0$或者$A_{0,0}+A_{0,1} > 0$并且$A_{1,0} + A_{1,1} > 0$,这样可以直接得出答案

剩下的情况就是四种只存在一种的情况,这种情况把所有坐标缩小一倍,相等关系不变。

于是复杂度$O(nlog(n^2))$

 

这个想法根本没想到 感觉很奇妙 不过似乎有一种2-sat解法 可惜比赛的时候2-sat忘光了

在宿舍里打比赛果然手速减半 又掉分了

#include <bits/stdc++.h>
using namespace std;
const int maxn = 1e5 + 5;
int n;
int x[maxn], y[maxn], cnt[2][2];
int main() {
    scanf("%d", &n);
    for(int i = 1; i <= n; ++i) {
        scanf("%d%d", &x[i], &y[i]);
    }
    while(1) {
        int s = 0;
        memset(cnt, 0, sizeof(cnt));
        for(int i = 1; i <= n; ++i) {
            ++cnt[x[i] & 1][y[i] & 1];
        }
        vector<int> ans;
        if(cnt[0][0] + cnt[1][1] > 0 && cnt[0][1] + cnt[1][0] > 0) {
            for(int i = 1; i <= n; ++i) {
                if(x[i] + y[i] & 1) {
                    ans.push_back(i);
                }
            }
            printf("%d\n", ans.size());
            for(auto x : ans) {
                printf("%d ", x);
            }
            return 0;
        }
        if(cnt[0][0] + cnt[0][1] > 0 && cnt[1][0] + cnt[1][1] > 0) {
            for(int i = 1; i <= n; ++i) {
                if(x[i] & 1) {
                    ans.push_back(i);
                }
            }
            printf("%d\n", ans.size());
            for(auto x : ans) {
                printf("%d ", x);
            }
            return 0;
        }
        for(int i = 1; i <= n; ++i) {
            x[i] >>= 1;
            y[i] >>= 1;
        }
    }
    return 0;
}
View Code

 

posted @ 2019-12-30 15:40  19992147  阅读(328)  评论(4编辑  收藏  举报