bzoj5462
线段树+set
按时间扫描线,对于每个位置维护当前位置商店的同类型商店的前继
每次查询二分答案,设当前位置为$p$,二分大小为$mid$,那么希望$[p-mid,p+mid]$覆盖了所有类型
等价于$(p+mid,inf)$之间所有商店的前继位置都大于等于$p-mid$
时间复杂度$O(nlog^2n)$
#include <bits/stdc++.h> using namespace std; const int maxn = 3e5 + 5, maxm = maxn * 28, inf = 1e9 + 5; int n, k, q; int ans[maxn]; namespace seg { multiset<int> s[maxn]; int root, Pool, tot; int mn[maxm], lc[maxm], rc[maxm]; map<int, int> id; void update(int l, int r, int &x, int pos, int val, int f) { if(!x) { x = ++Pool; } if(l == r) { if(id.find(l) == id.end()) { id[l] = ++tot; } int cur = id[l]; if(f == -1) { s[cur].erase(s[cur].find(val)); } else { s[cur].insert(val); } mn[x] = s[cur].size() ? *s[cur].begin() : 0x3f3f3f3f; return; } int mid = l + r >> 1; if(pos <= mid) { update(l, mid, lc[x], pos, val, f); } else { update(mid + 1, r, rc[x], pos, val, f); } mn[x] = min(mn[lc[x]], mn[rc[x]]); } int query(int l, int r, int x, int a, int b) { if(l > b || r < a || !x) { return inf; } if(l >= a && r <= b) { return mn[x]; } int mid = l + r >> 1; return min(query(l, mid, lc[x], a, b), query(mid + 1, r, rc[x], a, b)); } } struct data { int pos, type, t, f; data() = default; data(int _pos, int _type, int _t, int _f) : pos(_pos), type(_type), t(_t), f(_f) {} bool friend operator < (const data &a, const data &b) { return a.t == b.t ? a.f < b.f : a.t < b.t; } }; multiset<int> s[maxn]; int main() { using seg::root; scanf("%d%d%d", &n, &k, &q); vector<data> events; for(int i = 1; i <= n; ++i) { int x, t, a, b; scanf("%d%d%d%d", &x, &t, &a, &b); events.push_back(data(x, t, a, 0)); events.push_back(data(x, t, b + 1, -1)); } for(int i = 1; i <= q; ++i) { int l, y; scanf("%d%d", &l, &y); events.push_back(data(l, i, y, 1)); } memset(seg::mn, 0x3f3f, sizeof(seg::mn)); sort(events.begin(), events.end()); for(int i = 1; i <= k; ++i) { s[i].insert(inf); s[i].insert(-inf); seg::update(1, inf, root, inf, -inf, 1); } for(int i = 0; i < events.size(); ++i) { data tmp = events[i]; if(tmp.f != 1) { int type = tmp.type, pos = tmp.pos, f = tmp.f; multiset<int> :: iterator it; if(f == 0) { it = s[type].lower_bound(pos); int tmp_p = *it; seg::update(1, inf, root, tmp_p, *(--it), -1); seg::update(1, inf, root, tmp_p, pos, 1); tmp_p = *it; it = s[type].insert(pos); seg::update(1, inf, root, pos, tmp_p, 1); } else { it = s[type].find(pos); int prev = *(--it); ++it; int next = *(++it); --it; seg::update(1, inf, root, pos, prev, -1); seg::update(1, inf, root, next, pos, -1); seg::update(1, inf, root, next, prev, 1); s[type].erase(it); } } else { int pos = tmp.pos, type = tmp.type; int l = -1, r = inf + 1, answer = -1; while(r - l > 1) { int mid = l + r >> 1; if(seg::query(1, inf, root, min(pos + mid + 1, inf), inf) >= pos - mid) { r = answer = mid; } else { l = mid; } } ans[type] = answer; } } for(int i = 1; i <= q; ++i) { printf("%d\n", ans[i]); } return 0; }