算法与数据结构——桶排序
桶排序
前面的快速排序、归并排序、堆排序等都是属于“基于比较的排序算法”,它们通过比较元素间的大小来实现排序。此类排序算法的时间复杂度无法超越O(nlogn)。下面介绍几种“非比较排序算法”,它们的时间复杂度可以达到线性阶。
桶排序(bucket sort)是分治策略的一个典型应用。它通过设置一些具有大小顺序的桶,每个桶对应一个数据范围,将数据平均分配到各个桶中;然后,在每个桶内部分别执行排序;最终按照桶的顺序将所有数据合并。
算法流程
考虑一个长度为n的数组,其元素时范围[0,1)内的浮点数。桶排序的流程如下所示。
- 初始化k个桶,将n个元素分配到k个桶中。
- 对每个桶分别执行排序(这里采用编程语言的内置排序函数)。
- 按照桶从小到大的顺序合并结果。
/* 桶排序 */
void bucketSort(vector<float> &nums) {
// 初始化 k = n/2 个桶,预期向每个桶分配 2 个元素
int k = nums.size() / 2;
vector<vector<float>> buckets(k);
// 1. 将数组元素分配到各个桶中
for (float num : nums) {
// 输入数据范围为 [0, 1),使用 num * k 映射到索引范围 [0, k-1]
int i = num * k;
// 将 num 添加进桶 bucket_idx
buckets[i].push_back(num);
}
// 2. 对各个桶执行排序
for (vector<float> &bucket : buckets) {
// 使用内置排序函数,也可以替换成其他排序算法
sort(bucket.begin(), bucket.end());
}
// 3. 遍历桶合并结果
int i = 0;
for (vector<float> &bucket : buckets) {
for (float num : bucket) {
nums[i++] = num;
}
}
}
算法特性
桶排序适用于处理体量很大的数据。例如,输入数据包含100万个元素,由于空间限制,系统内存无法一次性加载所有数据。此时,可以将数据分成1000个桶,然后分别对每个桶进行排序,最后将结果合并。
- 时间复杂度为O(n + k):假设元素在各个桶内平均分布,那么每个桶内的元素数量为 n/k。假设排序单个桶使用O(n/klogn/k)时间,则排序所有桶使用O(nlogn/k)时间。当桶数量k比较大时,时间复杂度趋向于O(n)。合并结果需要遍历所有桶和元素,花费O(n+k)时间。
- 自适应排序:最差情况下,所有数据被分配到一个桶中,且排序该桶使用O(n2)时间。
- 空间复杂度为O(n+k)、非原地排序:需要借助k个桶和总共n个元素的额外空间。
- 桶排序是否稳定取决于桶内元素的算法是否稳定。
如何实现平均分配
桶排序的时间复杂度理论上可以达到O(n),关键在于将元素均匀分配到各个桶中,因为实际数据往往不是均匀分布的。例如,我们想要将淘宝上的所有商品按价格范围平均分配到10个桶中,但商品价格分布不均,低于100元的非常多,高于1000元的非常少。若将价格区间平均划分为10个,各个桶中的商品数量差距会非常大。
为实现平均分配,我们可以先设定一条大致的分界线,将数据粗略地分到3个桶中。分配完毕后,再将商品较多的桶继续划分为3个桶,直至所有桶中的元素数量大致相等。
如下图所示,这种方法本质上是创建一棵递归树,目标是让叶节点的值尽可能平均。当然,不一定要每轮数据划分为3个桶,具体划分方式可根据数据特点灵活选择。
如果我们提前知道商品价格的概率分布,则可以根据数据概率分布设置每个桶的价格分界线。值得注意的是,数据分布不一定需要特意统计,也可以根据数据特点采用某种概率模型进行近似。
如下图所示,我们假设商品价格服从正态分布,这样就可以合理地设定价格区间,从而将商品平均分配到各个桶中。