今天下午做了一下午的大整数。。。
都不是很难,只要找到了归规律,处理好大整数就可以AC了---
1130 递推公式为
f[i]=0;
for(j=0;j<=i-1;j++)
{
f[i]+=f[j]*f[i-j-1];
}
用大整数转化一下就可以了。。
1133:
m个人拿50,n个人拿100 , 所以如果 n>m,那么排序方法数为 0 这一点很容易想清楚
现在我们假设 拿50的人用 ‘0’表示, 拿100的人用 1 表示。
如果有这么一个序列 0101101001001111..........
当第K个位置出现1的个数多余0的个数时就是一个不合法序列了
假设m=4 n=3的一个序列是:0110100 显然,它不合法, 现在我们把它稍微变化一下:
把第二个1(这个1前面的都是合法的)后面的所有位0变成1,1变成0
就得到 0111011 这个序列1的数量多于0的数量, 显然不合法, 但现在的关键不是看这个序列是不是合法的
关键是:它和我们的不合法序列 0110100 成一一对应的关系
也就是说任意一个不合法序列(m个0,n个1), 都可以由另外一个序列(n-1个0和m+1个1)得到
另外我们知道,一个序列要么是合法的,要么是不合法的
所以,合法序列数量 = 序列总数量 - 不合法序列的总量
序列总数可以这样计算m+n 个位置中, 选择 n 个位置出来填上 1, 所以是 C(m+n, n)
不合法序列的数量就是: m+n 个位置中, 选择 m+1 个位置出来填上 1 所以是 C(m+n, m+1)
然后每个人都是不一样的,所以需要全排列 m! * n!
所以最后的公式就是(C(m+n, n)-C(m+n, m+1))*m!*n! 化简后为 (m+n)!*(m-n+1)/(m+1);
1250
这题不能预先处理,只能每有一个n然后对这个n进行处理。。。(效率不是很高)
代码 就不贴了。。