机器学习classification_report方法及precision精确率和recall召回率 说明

classification_report简介

sklearn中的classification_report函数用于显示主要分类指标的文本报告.在报告中显示每个类的精确度,召回率,F1值等信息。 
主要参数: 
y_true:1维数组,或标签指示器数组/稀疏矩阵,目标值。 
y_pred:1维数组,或标签指示器数组/稀疏矩阵,分类器返回的估计值。 
labels:array,shape = [n_labels],报表中包含的标签索引的可选列表。 
target_names:字符串列表,与标签匹配的可选显示名称(相同顺序)。 
sample_weight:类似于shape = [n_samples]的数组,可选项,样本权重。 
digits:int,输出浮点值的位数.

classification_report用法示例:

from sklearn.metrics import classification_report
y_true = [0, 1, 2, 2, 2]
y_pred = [0, 0, 2, 2, 1]
target_names = ['class 0', 'class 1', 'class 2']
print(classification_report(y_true, y_pred, target_names=target_names))

输出:

             precision    recall  f1-score   support

    class 0       0.50      1.00      0.67         1
    class 1       0.00      0.00      0.00         1
    class 2       1.00      0.67      0.80         3

avg / total       0.70      0.60      0.61         5

其中列表左边的一列为分类的标签名,右边support列为每个标签的出现次数.avg / total行为各列的均值(support列为总和). 
precision recall f1-score三列分别为各个类别的精确度/召回率及 F1 F1值.

精确度/召回率/F1值

精确度&召回率

精确度/召回率/F1值在<统计学习方法>和周志华的<机器学习>中都有详细介绍,以下参考维基百科中Precision and recall的说明:

如下图所示,假设有若干张图片,其中12张是狗的图片其余是猫的图片.现在利用程序去识别狗的图片,结果在识别出的8张图片中有5张是狗的图片,3张是猫的图片(属于误报).

 

图中,实心小圆代表狗的图片,虚心小圆代表猫的图片,圆形区域代表识别结果.

则该程序的精度precision=5/8,召回率recall=5/12。

当一个搜索引擎返回30个页面时,只有20页是相关的,而没有返回40个额外的相关页面,其精度为20/30 = 2/3,而其召回率为20/60 = 1/3。在这种情况下,精确度是“搜索结果有多大用处”,而召回是“结果如何完整”。

F1 F1值

 F1 F1值是精确度和召回率的调和平均值:

 2F1=1P+1R 2F1=1P+1R

 F1=2P×RP+R F1=2P×RP+R

精确度和召回率都高时, F1 F1值也会高. F1 F1值在1时达到最佳值(完美的精确度和召回率),最差为0.在二元分类中, F1 F1值是测试准确度的量度。

示例说明:

from sklearn.metrics import classification_report
y_true = [0, 1, 2, 2, 2]
y_pred = [0, 0, 2, 2, 1]
print(classification_report(y_true, y_pred))

输出:

            precision    recall  f1-score   support

          0       0.50      1.00      0.67         1
          1       0.00      0.00      0.00         1
          2       1.00      0.67      0.80         3

avg / total       0.70      0.60      0.61         5

其中 

真实值预测值
0 0
1 0
2 2
2 2
2 1

对示例程序中的结果:

  precision    recall  f1-score   support

0       0.50      1.00      0.67         1
1       0.00      0.00      0.00         1
2       1.00      0.67      0.80         3

第一行的计算: 
即0的预测情况:真实值中有1个0,预测值中有2个0,其中1个预测正确,1个预测错误.如图所示:

则, 
 P=12=0.5 P=12=0.5 
 R=11=1 R=11=1 
 F1=212×112+1=0.67 F1=212×112+1=0.67

第二行的计算: 
即1的预测情况:真实值中有1个1,预测值中有1个1,且预测错误.如图所示: 

则, 
 P=01=0 P=01=0 
 R=01=0 R=01=0 
 F1=0 F1=0

第三行的计算: 
即2的预测情况:真实值中有3个2,预测值中有2个2,且预测正确.如图所示:

则, 
 P=22=1 P=22=1 
 R=23=0.67 R=23=0.67 
 F1=21×231+23+=0.8

posted @ 2018-03-13 16:34  178mz  阅读(28634)  评论(0编辑  收藏  举报