ACM 模板库

Template For ACM

一. 字符串

标准库

sscanf

sscanf(const char *__source, const char *__format, ...) :从字符串 __source 里读取变量,比如 sscanf(str,"%d",&a)

sprintf

sprintf(char *__stream, const char *__format, ...) :将 __format 字符串里的内容输出到 __stream 中,比如 sprintf(str,"%d",i)

strcmp

int strcmp(const char *str1, const char *str2):按照字典序比较 str1 str2str1 字典序小返回负值,一样返回 0,大返回正值 请注意,不要简单的认为只有 0, 1, -1 三种,在不同平台下的返回值都遵循正负,但并非都是 0, 1, -1

strcpy

char *strcpy(char *str, const char *src) : 把 src 中的字符复制到 str 中, str src 均为字符数组头指针,返回值为 str 包含空终止符号 '\0'

strncpy

char *strncpy(char *str, const char *src, int cnt) :复制至多 cnt 个字符到 str 中,若 src 终止而数量未达 cnt 则写入空字符到 str 直至写入总共 cnt 个字符。

strcat

char *strcat(char *str1, const char *str2) : 将 str2 接到 str1 的结尾,用 *str2 替换 str1 末尾的 '\0' 返回 str1

strstr

char *strstr(char *str1, const char *str2) :若 str2str1 的子串,则返回 str2str1 的首次出现的地址;如果 str2 不是 str1 的子串,则返回 NULL

strchr

char *strchr(const char *str, int c) :找到在字符串 str 中第一次出现字符 c 的位置,并返回这个位置的地址。如果未找到该字符则返回 NULL

strrchr

char *strrchr(const char *str, char c) :找到在字符串 str 中最后一次出现字符 c 的位置,并返回这个位置的地址。如果未找到该字符则返回 NULL

KMP

//以 1 为起点, 求nxt数组
nxt[1] = 0;
for(int i=2,j=0; i<=n; i++){
    while(j > 0 && a[i] != a[j+1]) j = nxt[j];
    if(a[i] == a[j+1]) j++;
    nxt[i] = j;
}

//求 f 匹配数组
for(int i=1,j=0;i<=m;i++){
    while(j > 0 && (j == n || b[i] != a[j+1])) j=nxt[j];
    if(b[i] == a[j+1]) j++;
    f[i] = j;
    //if(f[i] == n) 此时为A在B中的某一次出现
}

EXKMP

z[i] 是 s 和从 i 开始的 s 的后缀的最大公共前缀长度。

//初始下标为0
for(int i=1,l=0,r=0;i<n;i++){
    if(i <= r) z[i] = min(r-i+1, z[i-l]);
    while(i + z[i] < n && s[z[i]] == s[i + z[i]])++z[i];
    if(i + z[i] - 1 > r) l = i, r = i + z[i] - 1;
}

Manacher

const int N = 11000000 + 5;
char s[N], ma[N*2];
int mp[N*2];//mp[i] 为在s中以对应位置为中心的极大子回文串的总长度+1
int Manacher(char *s, int n){
    int len = 0;
    ma[len++] = '$'; ma[len++] = '#';
    for(int i=0;i<n;i++){
        ma[len++] = s[i];
        ma[len++] = '#';
    }
    ma[len] = 0;
    int mx = 0, id = 0;
    int res = 0;
    for(int i=0;i<len;i++){
        mp[i] = mx > i ? min(mp[2*id-i], mx - i) : 1;
        while(ma[i+mp[i]] == ma[i-mp[i]]) mp[i]++;
        if(i + mp[i] > mx) {
            mx = mp[i] + i;
            id = i;
        }
        res = max(res, mp[i] - 1);
    }
    return res;
}
int main(){
    scanf("%s", s);
    printf("%d", Manacher(s, strlen(s)));
    return 0;
}

AC自动机

#include <bits/stdc++.h>
using namespace std;
const int N = 1e6 + 10;
int n;
char s[N];
namespace AC{
    int tr[N][26],tot;
    int e[N],fail[N];
    queue<int> q;
    void init(){
        for(int i=0;i<=tot;i++){
            memset(tr[i],0,sizeof tr[i]);
            fail[i] = e[i] = 0;
        }
        tot = 0;
    }
    void insert(char *s){
        int u = 0;
        int len = strlen(s + 1);
        for(int i=1;i<=len;i++){
            if(!tr[u][s[i] - 'a']){
                tr[u][s[i] - 'a'] = ++tot;
            }
            u = tr[u][s[i] - 'a'];
        }
        e[u] ++;
    }
    void build(){
        for(int i=0;i<26;i++)if(tr[0][i])q.push(tr[0][i]);
        while(q.size()){
            int u = q.front();q.pop();
            e[u] |= e[fail[u]];
            for(int i=0;i<26;i++){
                if(tr[u][i])fail[tr[u][i]] = tr[fail[u]][i],q.push(tr[u][i]);
                else tr[u][i] = tr[fail[u]][i];
            }
        }
    }
    int query(char *t){
        int u = 0,res = 0;
        for(int i=1;t[i];i++){
            u = tr[u][t[i] - 'a'];
            for(int j=u;j && e[j] != -1;j = fail[j])
                res += e[j],e[j] = -1;
        }
        return res;
    }
}
int main(){
    int T;scanf("%d",&T);
    while(T--){
        scanf("%d",&n);
        AC::init();
        for(int i=1;i<=n;i++)scanf("%s",s+1),AC::insert(s);
        scanf("%s",s+1);
        AC::build();
        printf("%d\n",AC::query(s));
    }
    return 0;
}

后缀数组

1. 倍增

int wa[N],wb[N],wv[N],c[N], rk[N];
int sa[N], height[N];
int cmp(int *r,int a,int b,int l){
    return r[a] == r[b] && r[a + l] == r[b + l];
}
void build_sa(int *r,int * sa,int n,int m){
    int i,j,p,*x = wa,*y = wb, *t;
    for(i=0;i<m;i++)c[i] = 0;
    for(i=0;i<n;i++)c[x[i] = r[i]] ++;
    for(i=1;i<m;i++)c[i] += c[i-1];
    for(i=n-1;i>=0;i--)sa[--c[x[i]]] = i;
    for(j=1,p=1;p<n;j *= 2,m=p){
        for(p=0,i=n-j;i<n;i++) y[p++] = i;
        for(i = 0; i < n; i++)if(sa[i] >= j)y[p++] = sa[i] - j;
        for(i=0;i<n;i++)wv[i] = x[y[i]];
        for(i=0;i<m;i++)c[i] = 0;
        for(i=0;i<n;i++)c[wv[i]] ++;
        for(i=1;i<m;i++)c[i] += c[i-1];
        for(i=n-1;i>=0;i--)sa[--c[wv[i]]] = y[i];
        for(t = x,x = y,y = t,p = 1,x[sa[0]] = 0,i = 1;i<n;i++)
            x[sa[i]] = cmp(y,sa[i-1],sa[i],j) ? p-1 : p ++;
    }
}

2. DC3

#define F(x) ((x) / 3 + ((x) % 3 == 1 ? 0 : tb))
#define G(x) ((x) < tb ? (x) * 3 + 1 : ((x) - tb) * 3 + 2)
int n;
char s[N], t[N];
int a[N], wa[N], wb[N], c[N], wv[N], sa[N], be[N];
int rk[N], height[N];

int c0(int *r, int a, int b) {
    return r[a] == r[b] && r[a + 1] == r[b + 1] && r[a + 2] == r[b + 2];
}
int c12(int k, int *r, int a, int b) {
    if (k == 2)
        return r[a] < r[b] || r[a] == r[b] && c12(1, r, a + 1, b + 1);
    return r[a] < r[b] || r[a] == r[b] && wv[a + 1] < wv[b + 1];
}
void sort(int *r, int *a, int *b, int n, int m) {
    for (int i = 0; i < n; i++) wv[i] = r[a[i]];
    for (int i = 0; i < m; i++) c[i] = 0;
    for (int i = 0; i < n; i++) c[wv[i]]++;
    for (int i = 1; i < m; i++) c[i] += c[i - 1];
    for (int i = n - 1; i >= 0; i--) b[--c[wv[i]]] = a[i];
}
void dc3(int *r, int *sa, int n, int m) {
    int i, j, *rn = r + n, *san = sa + n, ta = 0, tb = (n + 1) / 3, tbc = 0, p;
    r[n] = r[n + 1] = 0;
    for (i = 0; i < n; i++) if (i % 3 != 0) wa[tbc++] = i;
    sort(r + 2, wa, wb, tbc, m);
    sort(r + 1, wb, wa, tbc, m);
    sort(r, wa, wb, tbc, m);
    for (p = 1, rn[F(wb[0])] = 0, i = 1; i < tbc; i++)
        rn[F(wb[i])] = c0(r, wb[i - 1], wb[i]) ? p - 1 : p++;
    if (p < tbc) dc3(rn, san, tbc, p);
    else for (i = 0; i < tbc; i++) san[rn[i]] = i;
    for (i = 0; i < tbc; i++) if (san[i] < tb) wb[ta++] = san[i] * 3;
    if (n % 3 == 1) wb[ta++] = n - 1;
    sort(r, wb, wa, ta, m);
    for (i = 0; i < tbc; i++) wv[wb[i] = G(san[i])] = i;
    for (i = 0, j = 0, p = 0; i < ta && j < tbc; p++)
        sa[p] = c12(wb[j] % 3, r, wa[i], wb[j]) ? wa[i++] : wb[j++];
    for (; i < ta; p++) sa[p] = wa[i++];
    for (; j < tbc; p++) sa[p] = wb[j++];
}

3. 求\(height\) 以及 \(lcp\)

void calheight(int *r, int * sa, int n){
    int i, j, k = 0;
    for (int i = 1; i <= n;i++)
        rk[sa[i]] = i;
    for (int i = 0; i < n;height[rk[i++]] = k){
        for (k ? k-- : 0, j = sa[rk[i] - 1]; r[i + k] == r[j + k];k++);
    }
}
struct RMQ{
    int mi[N][20], kk[N];
    void init(int n,int *a){
        kk[1] = 0;
        for (int i = 2; i <= n;i++)
            kk[i] = kk[i / 2] + 1;
        for (int i = 1; i <= n;i++)
            mi[i][0] = a[i];
        for (int j = 1; (1 << j) <= n;j++){
            for (int i = 1; i + (1 << j) - 1 <= n;i++){
                mi[i][j] = min(mi[i + (1 << (j - 1))][j - 1], mi[i][j - 1]);
            }
        }
    }
    int query(int l,int r){
        int k = kk[r - l + 1];
        return min(mi[l][k], mi[r - (1 << k) + 1][k]);
    }
} rmq;

后缀自动机

最多 \(2n\) 个点,\(3n\) 条边

const int N = 200000 + 5; //N为字符串长度两倍
const int P = 26;//P过大时改用unordered_map
char s[N], a[N];
struct node{
    int link, len, trans[P];
	void clear(){
        memset(trans,0, sizeof trans);
		link = len = 0;
	}
};
struct SAM{
    node S[N];
    int p, np, size;
    int b[N], c[N];
	SAM():p(1),np(1),size(1){}
	void clear(){
		for(int i=0;i<=size;i++)S[i].clear();
		np = size = p = 1;
	}
	void insert(char ch){
		int x = ch - 'a';
		np = ++size;
		S[np].len = S[p].len + 1;
		while(p != 0 && !S[p].trans[x]) S[p].trans[x] = np, p = S[p].link;
		if(p == 0)S[np].link = 1;
		else{
			int q, nq;
			q = S[p].trans[x];
			if(S[q].len == S[p].len + 1) S[np].link = q;
			else{
                nq = ++size;
				S[nq] = S[q]; 
                S[nq].len = S[p].len + 1;
				S[np].link = S[q].link = nq;
				while(p != 0 && S[p].trans[x] == q) S[p].trans[x] = nq, p = S[p].link;
			}
		}
		p = np;
	}
    // 基数排序,从size倒序遍历可以自底向上更新,多组数据时,c 数组要更新
    void sort(){
        for(int i=1;i<=size;i++)++c[S[i].len];
        for(int i=1;i<=size;i++)c[i] += c[i-1];
        for(int i=1;i<=size;i++)b[c[S[i].len]--] = i;
    }
}sam;

回文自动机

namespace PAT{
    const int SZ = 6e5+10;
    int ch[SZ][26],fail[SZ],cnt[SZ],len[SZ],tot,last;
    int be[SZ],ok[SZ];
    void init(int n){
        for(int i=0;i<=n+10;i++){
            fail[i] = cnt[i] = len[i] = 0;
            for(int j=0;j<26;j++)ch[i][j] = 0;
            be[i] = ok[i] = 0;
        }
        s[0] = -1;fail[0] = 1;last = 0;
        len[0] = 0;len[1] = -1;tot = 1;
    }
    inline int newnode(int x){
        len[++tot] = x;return tot;
    }
    inline int getfail(char *s, int x,int n){
        while(s[n-len[x]-1] != s[n])x = fail[x];
        return x;
    }
    void create(char *s){
        s[0] = -1;
        for(int i=1;s[i];++i){
            int t = s[i]- 'a';
            int p = getfail(s, last,i);
            if(!ch[p][t]){
                int q = newnode(len[p]+2);
                fail[q] = ch[getfail(s, fail[p],i)][t];
                ch[p][t] = q;
            }
            ++cnt[last = ch[p][t]];
        }
    }
    void solve(){
        for(int i=tot;i>=2;i--){
            if(be[i] == 0)be[i] = i;
            while(be[i] >= 2 && len[be[i]] > (len[i] + 1)/2)be[i] = fail[be[i]];
            if(len[be[i]] == (len[i]+1)/2)ok[i] = 1;
            be[fail[i]] = be[i];
        }
        for(int i=tot;i>=2;i--){
            cnt[fail[i]] += cnt[i];
            if(ok[i]) res[len[i]] += cnt[i];
        }
    }
}

二. 数论

筛质数

\(O(\sum_{质数p\le n}{n\over p}) = O(nlogn)\)

void primes(int n){
	memset(v,0,sizeof v);
	for(int i=2;i<=n;i++){
		if(v[i])continue;
		for(int j=i;j<=n/i;j++)v[i*j] = 1;
	}
}

\(O(n)\)

  1. 第一种,v[i] 为 i 的最小质因子
int v[MAX_N],prime[MAX_N];
void primes(int n){
	memset(v,0,sizeof v);
	m = 0;
	for(int i=2;i<=n;i++){
		if(v[i] == 0){v[i] = i; prime[++m] = i;}
		for(int j=1;j<=m;j++){
			if(prime[j] > v[i] || prime[j] > n/i)break;
			v[i*prime[j]] = prime[j];
		}
	}
}
  1. 第二种: v[i] 表示 i 是否为质数
int v[MAX_N],prime[MAX_N];
void primes(int n){
	memset(v,0,sizeof v);
	m = 0;
	for(int i=2;i<=n;i++){
		if(v[i] == 0) prime[++m] = i;
		for(int j=1;j<=m;j++){
			if(prime[j] > n / i)break;
			v[i*prime[j]] = 1;
			if(i % prime[j] == 0)break;
		}
	}
}

质因子分解

void divide(int n){
	m = 0;
	for(int i=2;i<=sqrt(n);i++){
		if(n % i == 0){
			p[++m] = i,c[m] = 0;
			while(n % i == 0)n /= i,c[m]++;
		}
	}
	if(n > 1)
		p[++m] = n,c[m] = 1;
}

正因数集合

一个整数N的约数上界约为\(2\sqrt(N)\)
\(1\sim N\) 每个数的约数个数的总和约为\(NlogN\)

vector<int> fac[500010];
for(int i=1;i<=n;i++)
	for(int j=1;j<=n/i;j++)
		fac[i*j].push_back(i);

Miller Rabin Prollard Rho

/*
Miller_Rabin 算法进行素数测试
速度快可以判断一个 < 2^63 的数是不是素数
*/
const int S = 8;
typedef long long ll;
//计算 res = (a*b)%c
ll mult_mod(ll a, ll b, ll c){
    a %= c;
    b %= c;
    ll res = 0;
    ll tmp = a;
    for (; b;b>>=1){
        if(b & 1) {
            res += tmp;
            if(res > c)
                res -= c;
        }
        tmp <<= 1;
        if(tmp > c)
            tmp -= c;
    }
    return res;
}
ll pow_mod(ll a,ll b, ll mod){
    ll res = 1;
    a %= mod;
    for (; b;b>>=1){
        if(b & 1)
            res = mult_mod(res, a, mod);
        a = mult_mod(a, a, mod);
    }
    return res;
}
/*
通过 a^(n-1)=1(mod n)来判断 n 是不是素数
n - 1 = x * 2^t 中间使用二次判断
是合数返回true,不一定是合数返回false
*/
bool check(ll a,ll n,ll x,ll t){
    ll res = pow_mod(a, x, n);
    ll last = res;
    for (int i = 1; i <= t;i++){
        res = mult_mod(res, res, n);
        if(res == 1 && last != 1 && last != n-1)
            return true;
        last = res;
    }
    if(res != 1)
        return true;
    return false;
}
/*
Miller_Rabin 算法
是素数返回true
不是素数返回false
*/
bool Miller_Rabin(ll n){
    if(n < 2)
        return false;
    if(n == 2)
        return true;
    if((n&1) == 0)
        return false;
    ll x = n - 1;
    ll t = 0;
    while((x & 1) == 0) {
        x >>= 1, t++;
    }
    for (int i = 0; i < S;i++){
        ll a = rand() % (n - 1) + 1;
        if(check(a,n,x,t))
            return false;
    }
    return true;
}
/*
Pollard_rho 算法进行质因数分解
*/
ll fac[100];
int tol;
ll gcd(ll a,ll b){
    ll t;
    while(b){
        t = a;
        a = b;
        b = t % b;
    }
    if(a >= 0)
        return a;
    else
        return -a;
}
//找出一个因子
ll pollard_rho(ll x,ll c){
    ll i = 1, k = 2;
    ll x0 = rand() % (x - 1) + 1;
    ll y = x0;
    while(1){
        i++;
        x0 = (mult_mod(x0, x0, x) + c) % x;
        ll d = gcd(y - x0, x);
        if(d != 1 && d != x)
            return d;
        if(y == x0)
            return x;
        if(i == k) {
            y = x0;
            k += k;
        }
    }
}
//对 n 进行质因数分解,存入factor,k设置为107左右
void findfac(ll n,int k){
    if(n == 1)
        return;
    if(Miller_Rabin(n)){
        fac[tol++] = n;
        return;
    }
    ll p = n;
    int c = k;
    while(p >= n)
        p = pollard_rho(p, c--);
    findfac(p, k);
    findfac(n / p, k);
}
ll a[100010];
ll cal(ll n, ll x){
    ll ans = 0;
    while(n / x){
        ans += n / x;
        n /= x;
    }
    return ans;
}
unordered_map<ll, int> mp;
int main(){
    int T;
    ll n,x,y;
    scanf("%d", &T);
    while(T--){
        tol = 0;
        mp.clear();
        scanf("%lld%lld%lld", &n, &x, &y);
        for (int i = 1; i <= n;i++){
            scanf("%lld", &a[i]);
        }
        ll res = 1ll << 60;
        findfac(x, 107);
        for (int i = 0; i < tol;i++)
            mp[fac[i]]++;
        for (auto it = mp.begin(); it != mp.end(); it++) {
            ll num = 0;
            for (int i = 1; i <= n; i++) {
                num += cal(a[i], it->first);
            }
            res = min(res, (cal(y, it->first) - num) / it->second);
        }
        printf("%lld\n", res);
    }
}

高斯消元

const int N = 100 + 5;
int n;
double d[N][N], res[N];

int gauss(int n, int m){
    int row = 1;
    for(int col = 1; col <= n; col++){
        for(int i=row;i<=n;i++) {
            if(fabs(d[i][col]) > 1e-12) {
                for(int j=col;j<=m;j++) swap(d[i][j], d[row][j]);
            }
        }
        if(fabs(d[row][col]) < 1e-12) break;
        
        for(int j=m;j>=col;j--) d[row][j] /= d[row][col];

        for(int i=1;i<=n;i++) if(i != row){ // 只限定 i!=row即可,不用画蛇添足
            for(int j=m;j>=col;j--){
                d[i][j] -= d[i][col] * d[row][j];
            }
        }
        row++;
    }
    for(int i=1;i<=n;i++) {
        if(fabs(d[i][i]) < 1e-12) return -1;
        res[i] = d[i][m] /= d[i][i];
    }
    return 1;
}

int main(){
    scanf("%d", &n);
    for(int i=1;i<=n;i++){
        for(int j=1;j<=n+1;j++){
            scanf("%lf", &d[i][j]);
        }
    }
    if(gauss(n, n+1) == -1) puts("No Solution");
    else {
        for(int i=1;i<=n;i++) printf("%.2f\n", res[i]);
    }
    return 0;
}

矩阵快速幂

struct matrix{
    int r, c;
    ll s[N][N];
    matrix(int r=0,int c=0):r(r),c(c){
        memset(s, 0, sizeof s);
    }
};
matrix operator*(const matrix&a, const matrix&b){
    matrix c = matrix(a.r, b.c);
    for (int i = 0; i < c.r;i++){
        for (int j = 0; j < c.c;j++)
            for (int k = 0; k < a.c;k++)
                c.s[i][j] += a.s[i][k] * b.s[k][j];
    }
    return c;
}
matrix power(matrix a,int b){
    matrix res = a;
    b--;
    for (; b;b>>=1){
        if(b & 1)
            res = res * a;
        a = a * a;
    }
    return res;
}

欧拉函数

\(N = p_1^{c_1}p_2^{c_2}\cdots p_m^{c_m}\)

\(\phi(N) = N * {p_1-1 \over p_1} * {p_2 - 1 \over p_2} * \cdots {p_m-1\over p_m} = N * \prod_{质数p|N}(1-{1\over p})\)

性质:

  1. \(\forall n>1,1\sim n\) 中与n互质的数的和为\(n*\psi (n)/2\)

  2. 若a,b互质,则\(\psi (ab) = \psi(a)\psi(b)\)

  3. \(f\) 是积性函数,且在算术基本定理中 \(n = \prod _{i=1}^m p_i^{c_i}\) ,则\(f(n) = \prod _{i=1}^mf(p_i^{c_i})\)

  4. \(p|n\)\(p^2|n\) ,则 \(\psi(n) = \psi (n/p) * p\)

  5. \(p|n\)\(n \% p^2 != 0\) , 则 \(\psi(n) = \psi(n/p) * (p-1)\)

  6. \(\Sigma_{d|n}\psi(d) = n\)

积性函数:如果当a,b互质时,有 \(f(ab) = f(a)*f(b)\) 那么称函数 \(f\) 为积性函数

欧拉定理:若正整数 a,n互质,则 \(a^{\psi(n)} \equiv 1\pmod n\)

当n为质数时,\(\psi (n)\)\(n-1\),当a不为n的倍数时,a与n互质,故有欧拉定理成立:\(a^{n-1} \equiv 1 \pmod n\) ,左右两边同乘a有\(a^n\equiv a \pmod n\) 。当a为n的倍数时,该式依然成立

费马小定理:若 p 是质数,则对于任意整数a,有 \(a^p \equiv a \pmod p\)

int phi(int n){
    int ans = n;
    for(int i=2;i*i<=n;i++){
        if(n % i == 0){
            ans = ans / i * (i - 1);
            while(n % i == 0) n /= i;
        }
    }
    if(n > 1)ans = ans / n * (n - 1);
    return ans;
}
void enlur(int n){
    for(int i=2;i<=n;i++)phi[i] = i;
    for(int i=2;i<=n;i++)
        if(phi[i] == i)
            for(int j = i;j <= n;j += i)
                phi[j] = phi[j] / i * (i - 1);
}
const int N = 10000010;
int primes[N],v[N],m,n;
ll phi[N];
void prime(){
    phi[1] = 1;
    for(int i=2;i<=n;i++){
        if(!v[i]){
            primes[++m] = i;
            phi[i] = i-1;
        }
        for(int j=1;j<=m;j++){
            if(primes[j] > n / i)break;
            v[primes[j] * i] = 1;
            if(i % primes[j] == 0){
                phi[i*primes[j]] = phi[i] * primes[j];
                break;
            }else{
                phi[i*primes[j]] = phi[i] * (primes[j]-1);
            }
        }
    }
}

逆元

  1. 扩展欧几里得
typedef  long long ll;
void extgcd(ll a,ll b,ll& d,ll& x,ll& y){
    if(!b){ d=a; x=1; y=0;}
    else{ extgcd(b,a%b,d,y,x); y-=x*(a/b); }
}
ll inverse(ll a,ll n){
    ll d,x,y;
    extgcd(a,n,d,x,y);
    return d==1?(x+n)%n:-1;
}
  1. 费马小定理

  2. 当模 p 不是素数时候需要用到欧拉定理

  3. 线性递推逆元

\(inv[i] = (P - \lfloor P/i \rfloor) * inv[P\%i] \% P\)

typedef  long long ll;
const int N = 1e5 + 5;
ll fac[N], inv[N], fac_inv[N];
void getFac(int n){
    fac[0] = fac_inv[0] = 1;
    for(int i=1;i<=n;i++) fac[i] = fac[i-1] * i % mod;
    inv[1] = 1;
    for(int i=2;i<=n;i++) inv[i] = 1ll * (mod-mod/i)*inv[mod%i] % mod;
    for(int i=1;i<=n;i++) fac_inv[i] = fac_inv[i-1] * inv[i] % mod;
}

组合数学相关

一. 组合数学性质

  1. \(C_n^m = C_n^{n-m}\)

  2. \(C_n^m = C_{n-1} ^ m + C_{n-1} ^{m-1}\) (可用杨辉三角推到)

  3. \(C_n^0 + C_n^1 + C_n^2 + C_n^3 + \cdots + C_n^n = 2^n\)

  4. \(\sum_{i=0}^m C_n^i C_m^{m-i} = C_{m+n}^m(n \geq m)\) 分开取和一起取是一样的(也可以理解成先取和后取)

二. 多重集的排列数

设集合 \(S = \{n_1\cdot a_1,n_2\cdot a_2,\cdots,n_k\cdot a_k\}\) ,是由\(n_1\)\(a_1\)\(n_2\)\(a_2\)\(\cdots\) \(n_k\)\(a_k\) 组成的多重集。S的全排列个数为:

\[n!\over n_1!n_2! \cdots n_k! \]

三. 多重集组合数

n种不一样的球,每种球的个数是无限的,从中选k个出来组成一个多重集(不考虑元素的顺序),产生的不同多重集的数量为:

\(C_{n+k-1} ^ {k-1}\)

四. 不相邻的排列

\(1\sim n\) 这 n 个自然数中选k 个,这k 个数中任何两个数不相邻数的组合有 \(C_{n-k+1}^k\)

五. 错位排列

胸口贴着编号为\(1,2,\cdots,n\) 的 n 个球员分别住在编号为\(1,2,\cdots ,n\) 的n个房间里面。现规定每个人住一个房间,自己的编号不能和房间的编号一样

\(d[n] = (n-1)(d[n-1] + d[n-2]) (n\ge 3)\)

\(d[n] = n \times d[n-1]+ (-1)^n\)

六. 圆排列

n 个人全部来围成一圈为 \(Q_n^n\) ,其中已经排好的一圈,从不同位置断开,又变成不同的队列。所以:\(Q_n^n \times n = A_n^n \rightarrow Q_n = (n-1)!\)

由此可知部分圆排列为 \(Q_n^r = {A_n^r \over r} = {n! \over r \times (n-r)!}\)

七. 卢卡斯定理

\(C_n^k = C_{n\over p}^{k\over p} * C_{n\%p}^{k\%p} \pmod p\)

#include <bits/stdc++.h>
using namespace std;
const int N = 2e5+10;
typedef long long ll;
int T;
ll n,m,p;
ll j[N];
ll pow(ll a,ll b ,ll p){
    ll res = 1;
    for(;b;b>>=1){
        if(b & 1) res = (res * a)%p;
        a = a * a % p;
    }
    return res;
}
ll C(ll n,ll m){
    if(m > n)return 0;
    return ((j[n] * pow(j[m],p-2,p))%p * pow(j[n-m],p-2,p)%p);
}
ll Lucas(ll n,ll m){
    if(!m)return 1;
    return C(n%p,m%p)*Lucas(n/p,m/p)%p;
}
int main(){
    j[0] = 1;
    cin>>T;
    while(T--){
        cin >> n >> m >> p;
        for(int i=1;i<=p;i++)
            j[i] = j[i-1] * i % p;
        cout<<Lucas(n+m,n)<<endl;
    }
    return 0;
}

八. 斯特林数

  1. 把n个不同的球分成r个非空循环排列的方法数

    递推形式 : \(s(n,r) = (n-1)s(n-1,r) + s(n-1,r-1),n>r \ge 1\)

  2. 把n个不同的球放到r个盒子里,假设没有空盒,则放球方案数记作S(n,r),称为第二类Stirling数

    \(S(n,r) = rS(n-1,r) + S(n-1,r-1),n>r\ge 1\)

九. 莫比乌斯函数

\(\mu\) 为莫比乌斯函数

\[\mu(n)= \begin{cases} 1&n=1\\ 0&n\text{ 含有平方因子}\\ (-1)^k&k\text{ 为 }n\text{ 的本质不同质因子个数}\\ \end{cases} \]

通俗的讲,当n包含相等的质因子时,\(\mu(N)=0\) 。当N的所有质因子各不相等时,若N有偶数个质因子,\(\mu(N) = 1\),若N有奇数个质因子,\(\mu(N)=-1\)

若只求一项Mobius函数,则分解质因数即可计算,若求 \(1\sim N\)的每一项Mobius函数,可以利用线性筛法来求mobius函数

void getMu(){
    mu[1] = 1;
    for(int i=2;i<=n;++i){
        if(!v[i])p[++tot] = i,mu[i] = -1;
        for(int j=1;j<=tot && i * p[j] <= n;++j){
            flg[i * p[j]] = 1;
            if(i % p[j] == 0){
                mu[i * p[j]] = 0;
                break;
            }
            mu[i * p[j]] = - mu[i];
        }
    }
}
void getMu(int n) {
	mu[1] = 1;
	for (int i = 2; i <= n; ++i) {
		if (!flg[i]) p[++tot] = i, mu[i] = -1;
		for (int j = 1; j <= tot && i * p[j] <= n; ++j) {
			flg[i * p[j]] = 1;
			if (i % p[j] == 0) {
				mu[i * p[j]] = 0;
				break;
			}
			mu[i * p[j]] = -mu[i];
		}
	}
}

十. 把n个物品分成m堆

  1. n个相同物品分成m个相同的堆,可以空

\(R(n,m) = \sum_{k=1}^mS(n,k)\)

  1. 把n 个相同物品分成m个相同的堆,不可空

\(S(n,m) = S(n-1,m-1) + S(n-m,m)\)

  1. 把n个相同物品分成m个不同的堆,可空

\(T(n,m) = C_{n+m-1}^{m-1}\)

  1. 把n个相同物品分成m个不同的堆,不可空

\(U(n,m) = C_{n-1}^{m-1}\)

  1. 把n 个不同物品分成m 个相同的堆,可空

\(P(n,m) = \sum_{k=1}^mQ(n,k)\)

性质:\(\sum_{n=0}^\infty p(n)x^n = \prod_{k=1}^\infty({1\over 1-x^k})\)

应用:

  • 集合的划分数(\(B_n\) 是基数为n 的集合的划分方法的数目,贝尔数)。
  1. 递推:\(B_{n+1} = \sum_{k=0}^n(_k^n)B_k\)

  2. \(Dobinski\) 公式: \(B_n = {1\over e}\sum_{k=0}^\infty{k^n\over k!}\)

  3. \(Touchard\) 同余:\(B_{p+n} \equiv B_n+B_{n+1} \pmod p\)

  4. 第二类\(Stirling\) 数的和\(B_n = \sum_{k=1}^nS(n,k)\)

  5. 指数母函数:\(\sum_{n=0}^\infty {B_n\over n!}x^n = e^{e^x-1}\)

  6. 贝尔三角形&Aitken阵列&Peirce三角形

  • 第一行第一项为1 (\(a_{1,1} = 1\))

  • 对于\(n>1\),第\(n\) 行第一项等同于第 \(n-1\) 行最后一项(\(a_{n,1} = a_{n-1,n-1}\)

  • 对于\(m,n>1\)\(a_{n,m} = a_{n,m-1} + a_{n-1,m-1}\)

\[\begin{matrix} 1\\ 1&2\\ 2&3&5\\ 5&7&10&15\\ 15&20&27&37&52\\ 52&67&87&114&151&203\\ 203&255&322&409&523&674&877\\ 877&1080&1335&1657&2066&2589&3263&4140\\ \end{matrix} \]

每行首项是贝尔数。每行之和是第二类\(Stirling\)

  1. 把n 个不同的物品分成m 个相同的堆,不空

\(Q(n,m) = mQ(n-1,m) + Q(n-1,m-1)\)

三. 数据结构

并查集

带删除并查集

#include <bits/stdc++.h>
using namespace std;
const int N = 4000010;
int fa[N],to[N],sz[N],cnt,a[N],b[N],tot;
int n,m,k,x,y;
int ok[N];
int find(int x){
    return x == fa[x]?x:fa[x] = find(fa[x]);
}
void merge(int x,int y){
    int a = find(to[x]);
    int b = find(to[y]);
    if(a==b) return;
    fa[b] = a;
    sz[a] += sz[b]; sz[b] = 0;
}
void update(int x,int y){
    sz[find(to[x])]--;
    to[x] = ++cnt;
    sz[cnt] = 1;
    fa[cnt] = cnt;
    merge(x,y);
}
int main(){
    scanf("%d%d",&n,&m);cnt = n;
    for(int i=1;i<=n;i++)fa[i] = i,to[i] = i,sz[i] = 1;
    for(int i=1;i<=m;i++){
        scanf("%d%d",&k,&x);if(k!=3)scanf("%d",&y);
        if(k == 5){
            a[++tot] = x;
            b[tot] = y;continue;
        }
        if(k == 1)merge(x,y);
        if(k == 2)update(x,y);
        if(k == 4){
            if(find(to[x]) == find(to[y]))printf("Yes\n");
            else printf("No\n");
        }

        if(k == 3)printf("%d\n",sz[find(to[x])]-1);
    }
    
    for(int i=1;i<=tot;i++){
        if(find(to[a[i]]) == find(to[b[i]])) ok[find(to[a[i]])] = 1;
    }
    int res = -1;
    for(int i=1;i<=n;i++)
        if(!ok[find(to[i])])res = max(res,sz[find(to[i])]);
    cout<<res<<endl;
    return 0;
}

可持久化并查集

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int inf = 0x3f3f3f3f;
#define dbg(x...) do { cout << "\033[32;1m" << #x <<" -> "; err(x); } while (0)
void err() { cout << "\033[39;0m" << endl; }
template<class T, class... Ts> void err(const T& arg,const Ts&... args) { cout << arg << " "; err(args...); }
const int N = 200000 + 5;

int n, m;
struct TreeNode{
    int l, r;
};
int root[N];
class Union_Find{
public:
    int fa[N*30], dep[N*30], tot;
    TreeNode t[N*30];
    void build(int &p, int l, int r){
        p = ++tot;
        if(l == r){ fa[p] = l; return; }
        int mid = l + r >> 1;
        build(t[p].l, l, mid);
        build(t[p].r, mid+1, r);
    }
    void change(int last, int &p, int l, int r, int pos, int val){
        p = ++tot;
        t[p].l = t[last].l, t[p].r = t[last].r;
        if(l == r){
            fa[p] = val;
            dep[p] = dep[last];
            return;
        }
        int mid = (l + r) >> 1;
        if(pos <= mid) change(t[last].l, t[p].l, l, mid, pos, val);
        else change(t[last].r, t[p].r, mid + 1, r, pos, val);
    }
    int getIndex(int p, int l, int r, int pos){
        if(l == r) return p;
        int mid = l + r >> 1;
        if(pos <= mid) return getIndex(t[p].l, l, mid, pos);
        else return getIndex(t[p].r, mid+1, r, pos);
    }
    void add(int p, int l, int r, int pos){
        if(l == r){
            dep[p] ++;
            return;
        }
        int mid = l + r >> 1;
        if(pos <= mid) add(t[p].l, l, mid, pos);
        else add(t[p].r, mid+1, r, pos);
    }
    // find 返回的是祖先节点的下标
    int find(int p, int pos){
        int index = getIndex(p, 1, n, pos);
        if(fa[index] == pos) 
            return index;
        else 
            return find(p, fa[index]);
    }
    void merge(int last, int &p, int x, int y){
        int fax = find(p, x), fay = find(p, y);
        if(fa[fax] == fa[fay]) return;
        if(dep[fax] > dep[fay]) swap(fax, fay);
        change(last, p, 1, n, fa[fax], fa[fay]);
        if(dep[fax] == dep[fay]) add(p, 1, n, fa[fay]);
    }
}uf;

int main(){
    scanf("%d%d", &n, &m);
    uf.build(root[0], 1, n);
    for(int i=1;i<=m;i++){
        int op, x, y;
        scanf("%d%d", &op, &x);
        if(op == 1){
            scanf("%d", &y);
            root[i] = root[i-1];
            uf.merge(root[i-1], root[i], x, y);
        } else if(op == 2) root[i] = root[x];
        else{
            scanf("%d", &y);
            root[i] = root[i-1];
            int fax = uf.find(root[i], x);
            int fay = uf.find(root[i], y);
            if(uf.fa[fax] == uf.fa[fay]) puts("1");
            else puts("0");
        }
    }

    return 0;
}

带权删除并查集

2019南昌A

  1. k a b: merge the tribe containing the a-th family and the tribe containing the b-th family;
  2. k a: make the a-th family into extermination;
  3. k a b: the a-th family moves away from their tribe and join in the tribe containing the b-th family;
  4. k a b: report that if the a-th family and the b-th one belong to the same tribe;
  5. k a: report the total number of families in the tribe which contains the a-th family.
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int inf = 0x3f3f3f3f;
#define dbg(x...) do { cout << "\033[32;1m" << #x <<" -> "; err(x); } while (0)
void err() { cout << "\033[39;0m" << endl; }
template<class T, class... Ts> void err(const T& arg,const Ts&... args) { cout << arg << " "; err(args...); }
const int N = 1000000 + 50;
struct Node{
    int op, x, y;
}o[N];
vector<int> g[N];
int n, m;
int fa[N*2], dep[N*2], sz[N*2], to[N], tot;
int res[N];
int find(int x){
    if(x == fa[x]) return x;
    return find(fa[x]);
}
void dfs(int u){
    for(auto id : g[u]){
        int op = o[id].op, x = o[id].x, y = o[id].y;
        if(op == 1){
            if(to[x] == -1 || to[y] == -1){
                dfs(id);
                continue;
            }
            int rx = find(to[x]), ry = find(to[y]);
            if(rx == ry){ dfs(id); continue;}
            else if(dep[rx] == dep[ry]){
                fa[ry] = rx; sz[rx] += sz[ry]; dep[rx] ++;
                dfs(id);
                fa[ry] = ry; sz[rx] -= sz[ry]; dep[rx] --;
            } else {
                if(dep[rx] < dep[ry]) swap(rx, ry);
                fa[ry] = rx; sz[rx] += sz[ry];
                dfs(id);
                fa[ry] = ry; sz[rx] -= sz[ry];
            }
        } else if(op == 2){
            if(to[x] == -1) { dfs(id); continue; }
            int rx = find(to[x]);
            int t = to[x];
            to[x] = -1;
            sz[rx] --;
            dfs(id);
            to[x] = t;
            sz[rx] ++;
        } else if(op == 3){
            if(to[x] == - 1 || to[y] == -1) {dfs(id); continue; }
            int t = to[x];
            int rx = find(to[x]), ry = find(to[y]);
            sz[rx]--;
            to[x] = ++tot;
            sz[to[x]] = 1;
            fa[to[x]] = ry;
            sz[ry] ++;
            dfs(id);
            sz[ry] --;
            sz[rx] ++;
            to[x] = t;
        } else {
            if(op == 4){
                if(to[x] == -1 || to[y] == -1){
                    res[id] = 0;
                } else {
                    res[id] = find(to[x]) == find(to[y]);
                }
            } else if(op == 5){
                if(to[x] == -1) res[id] = 0;
                else {
                    res[id] = sz[find(to[x])];
                }
            }
            dfs(id);
        }
    }
}
int main(){
    scanf("%d%d", &n, &m);
    for(int i=1;i<=m;i++){
        int op, k, x, y = 0;scanf("%d%d%d", &op, &k, &x);
        g[k].push_back(i);
        if(op != 2 && op != 5) scanf("%d", &y);
        o[i] = {op, x, y};
    }
    for(int i=1;i<=n;i++) to[i] = i, fa[i] = i, sz[i] = 1;
    tot = n;
    dfs(0);
    for(int i=1;i<=m;i++){
        if(o[i].op == 4) puts(res[i] ? "Yes" : "No");
        else if(o[i].op == 5){
            printf("%d\n", res[i]);
        }
    }
    return 0;
}

树链剖分

int fa[N], dep[N], sz[N], son[N], top[N], dfn[N], rnk[N], cnt;
int head[N], ver[N << 1], nxt[N << 1], tot;
void dfs1(int x){
    sz[x] = 1;
    son[x] = 0;
    for (int i = head[x]; i;i=nxt[i]){
        int y = ver[i];
        if(y == fa[x])
            continue;
        dep[y] = dep[x] + 1;
        fa[y] = x;
        dfs1(y);
        sz[x] += sz[y];
        if(sz[y] > sz[son[x]])
            son[x] = y;
    }
}
void dfs2(int x,int tp){
    dfn[x] = ++cnt;
    rnk[cnt] = x;
    top[x] = tp;
    if(son[x])
        dfs2(son[x], tp);
    for (int i = head[x]; i;i=nxt[i]){
        int y = ver[i];
        if(y == fa[x] || y == son[x])
            continue;
        dfs2(y, y);
    }
}
ll querysum(int x,int y){
    ll res = 0;
    while(top[x] != top[y]){
        if(dep[top[x]] < dep[top[y]])
            swap(x, y);
        res = (res + query(1, dfn[top[x]], dfn[x])) % mod;
        x = fa[top[x]];
    }
    if(dep[x] < dep[y])
        swap(x, y);
    res = (res + query(1, dfn[y], dfn[x])) % mod;
    return res;
}

左偏树

#include <bits/stdc++.h>
using namespace std;
const int maxn = 100010;
int tot,v[maxn],l[maxn],r[maxn],d[maxn];
int n,m,fa[maxn],del[maxn];
int merge(int x,int y){
    if(!x)return y;
    if(!y)return x;
    if(v[x] > v[y] || (v[x] == v[y] && x > y))
        swap(x,y);
    r[x] = merge(r[x],y);
    fa[l[x]] = fa[r[x]] = fa[x] = x;
    if(d[l[x]] < d[r[x]])
        swap(l[x],r[x]);
    d[x] = d[r[x]] + 1;
    return x;
}
int init(int x){
    tot ++;
    v[tot] = x;
    l[tot] = r[tot] = d[tot] = 0;
}
int insert(int x,int y){
    return merge(x,init(y));
}
int top(int x){
    return v[x];
}
int pop(int x){
    del[x] = 1;
    fa[l[x]] = l[x];
    fa[r[x]] = r[x];
    return fa[x] = merge(l[x],r[x]);
}
int find(int x){
    return x == fa[x] ? x : fa[x] = find(fa[x]);
}
int main(){
    d[0] = -1;
    scanf("%d%d",&n,&m);
    for(int i=1;i<=n;i++){
        int x;scanf("%d",&x);
        v[i] = x;
        fa[i] = i;
    }
    while(m--){
        int op,x,y;
        scanf("%d",&op);
        if(op == 1){//合并,若删除或者xy在同一个堆则无视
            scanf("%d%d",&x,&y);
            if(del[x] || del[y])continue;
            x = find(x);y = find(y);
            if(x == y)continue;
            fa[x] = fa[y] = merge(x,y);
        }
        else{//输出所在堆的最小数,并将其删除
            scanf("%d",&x);
            if(del[x]){
                puts("-1");continue;
            }
            x = find(x);
            printf("%d\n",v[x]);
            //cout << l[x] << ' ' << r[x] << endl;
            pop(x);
        }
    }
    return 0;
}

树哈希

  1. Method I (Hacked)

\(f_{now} = size_{now} \times \sum f_{{son}_{now,i}} \times seed^{i-1}\)

注:要对子节点以 f 关键字排序

  1. Method II (Hacked)

$f_{now}=\bigoplus f_{son_{now,i}}\times seed+size_{son_{now,i}} $

  1. Method III

\(f_{now} = 1 + \sum f_{{son}_{now,i}} \times primes(size_{{son}_{now,i}})\)

线段树合并

const int N = 200000 + 5;
int head[N], ver[N<<1], nxt[N<<1], tot;
int dep[N], f[N][20];
int n, m;
void add(int x, int y){
    ver[++tot] = y, nxt[tot] = head[x], head[x] = tot;
}
void dfs(int x, int fa){
    for(int i=head[x];i;i=nxt[i]){
        int y = ver[i];
        if(y == fa) continue;
        f[y][0] = x;
        dep[y] = dep[x] + 1;
        dfs(y, x);
    }
}
int lca(int x, int y){
    if(dep[x] > dep[y]) swap(x, y);
    for(int i=19;i>=0;i--) if(dep[f[y][i]] >= dep[x]) y = f[y][i];
    if(x == y) return x;
    for(int i=19;i>=0;i--) if(f[y][i] != f[x][i]) y = f[y][i], x = f[x][i];
    return f[x][0];
}
struct SegTree{
    int l, r;
    int mx, pos;
}t[N*40];
int rt[N], cnt;
int res[N], st[N*40], top;
int newnode(){
    if(top) return st[top--];
    return ++cnt;
}
void rubbish(int p){
    st[++top] = p;
    t[p].l = t[p].r = t[p].mx = t[p].pos = 0;
}
void pushup(int p){
    int ls = t[p].l, rs = t[p].r;
    if(t[ls].mx >= t[rs].mx){
        t[p].mx = t[ls].mx;
        t[p].pos = t[ls].pos;
    } else {
        t[p].mx = t[rs].mx;
        t[p].pos = t[rs].pos;
    }
}
void change(int &p, int l, int r, int pos, int val){
    if(!p) p = newnode();
    if(l == r){
        t[p].mx += val;
        if(t[p].mx) t[p].pos = l;
        else t[p].pos = 0;
        return ;
    }
    int mid = l + r >> 1;
    if(pos <= mid) change(t[p].l, l, mid, pos, val);
    else change(t[p].r, mid+1, r, pos, val);
    pushup(p);
}
int merge(int u, int v, int l, int r){
    if(!u) return v;
    if(!v) return u;
    int w = newnode();
    if(l == r){
        t[w].mx = t[u].mx + t[v].mx;
        if(t[w].mx)t[w].pos = l;
        return w;
    }
    int mid = l + r >> 1;
    t[w].l = merge(t[u].l, t[v].l, l, mid);
    t[w].r = merge(t[u].r, t[v].r, mid + 1, r);
    pushup(w);
    rubbish(u);rubbish(v);
    return w;
}
void get(int x, int fa){
    for(int i=head[x];i;i=nxt[i]){
        int y = ver[i];
        if(y == fa) continue;
        get(y, x);
        rt[x] = merge(rt[x], rt[y], 1, 1e5);
    }
    res[x] = t[rt[x]].pos;
}
int main(){
    scanf("%d%d", &n, &m);
    for(int i=1;i<n;i++){
        int x, y;scanf("%d%d", &x, &y);
        add(x, y);
        add(y, x);
    }
    dep[1] = 1;
    dfs(1, 0);
    for(int j=1;j<20;j++)for(int i=1;i<=n;i++) f[i][j] = f[f[i][j-1]][j-1];
    while(m--){
        int x, y, z;
        scanf("%d%d%d", &x, &y, &z);
        int t = lca(x, y);
        if(t != x && t != y){
            change(rt[x], 1, 1e5, z, 1);
            change(rt[y], 1, 1e5, z, 1);
            change(rt[t], 1, 1e5, z, -1);
            change(rt[f[t][0]], 1, 1e5, z, -1);
        }else if(t == x){
            change(rt[y], 1, 1e5, z, 1);
            change(rt[f[t][0]], 1, 1e5, z, -1);
        }else if(t == y){
            change(rt[x], 1, 1e5, z, 1);
            change(rt[f[t][0]], 1, 1e5, z, -1);
        }
    }
    get(1, 0);
    for(int i=1;i<=n;i++) printf("%d\n", res[i]);
    return 0;
}

洛谷P5494

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int inf = 0x3f3f3f3f;
#define dbg(x...) do { cout << "\033[32;1m" << #x <<" -> "; err(x); } while (0)
void err() { cout << "\033[39;0m" << endl; }
template<class T, class... Ts> void err(const T& arg,const Ts&... args) { cout << arg << " "; err(args...); }
const int N = 200000 + 5;
/*
0, p, x, y, p 中[x,y] 中的数字放入新的可重集合
1, p, t 将 t 放入 p,并且清空 t
2, p, x, q, 在 p 中放入 x 个q
3,p, x, y,查询p中[x,y]
4, p,k,查询p中第 k 小的数字
*/
int n, m;
struct SegTree{
    int ls, rs;
    ll sum;// 区间数字个数
}t[N*40];
int root[N];
int st[N*40], top, tot;
int newnode(){
    if(top) return st[top--];
    return ++tot;
}
void rubbish(int p){
    st[++top] = p;
    t[p].ls = t[p].rs = t[p].sum = 0;
}
// 0 p x y
void build(int &p, int &q, int l, int r, int x, int y){
    if(!q) return ;
    if(l >= x && r <= y){
        // 信息要传输完整,除了考虑sum,还要考虑其他
        p = q;
        q = 0;
        return;
    }
    if(!p) p = newnode();
    int mid = l + r >> 1;
    if(mid >= x) build(t[p].ls, t[q].ls, l, mid, x, y);
    if(mid < y) build(t[p].rs, t[q].rs, mid+1, r, x, y);
    t[q].sum = t[t[q].ls].sum + t[t[q].rs].sum;
    t[p].sum = t[t[p].ls].sum + t[t[p].rs].sum;
}

// 1 p q
int merge(int p, int q, int l, int r){
    if(!p || !q) return p | q;
    int w = newnode();
    t[w].sum = t[p].sum + t[q].sum;
    if(l == r){
        //t[w].sum = t[p].sum + t[q].sum;
        return w;
    }
    int mid = l + r >> 1;
    t[w].ls = merge(t[p].ls, t[q].ls, l, mid);
    t[w].rs = merge(t[p].rs, t[q].rs, mid+1, r);
    rubbish(p); rubbish(q);
    //t[w].sum = t[t[w].ls].sum + t[t[w].rs].sum;
    return w;
}
// 2, p, x, q;
void change(int &p, int l, int r, int pos, int num){
    if(!p) p = newnode();
    if(l == r){
        t[p].sum += num;return;
    }
    int mid = l + r >> 1;
    if(pos <= mid) change(t[p].ls, l, mid, pos, num);
    else change(t[p].rs, mid+1, r, pos, num);
    t[p].sum = t[t[p].ls].sum + t[t[p].rs].sum;
}
// 3 p x y
ll ask(int p, int l, int r, int x, int y){
    if(l >= x && r <= y) return t[p].sum;
    int mid = l + r >> 1;
    ll res = 0;
    if(t[p].ls && x <= mid) res += ask(t[p].ls, l,mid, x, y);
    if(t[p].rs && mid < y) res += ask(t[p].rs, mid+1, r, x, y);
    return res;
}
// 4 p, k
ll ask(int p, int l, int r, ll k){
    if(k > t[p].sum || k <= 0) return -1;
    if(l == r) return l;
    int mid = l + r >> 1;
    if(t[t[p].ls].sum >= k) return ask(t[p].ls, l, mid, k);
    else return ask(t[p].rs, mid+1, r, k - t[t[p].ls].sum);
}
int main(){
    scanf("%d%d", &n, &m);
    int now = 1;
    for(int i=1;i<=n;i++){
        int x;scanf("%d", &x);
        change(root[1], 1, n, i, x);
    }
    while(m--){
        int op, p, x, y, q;
        scanf("%d%d", &op, &p);
        if(op == 0){
            scanf("%d%d", &x, &y);
            now ++;
            build(root[now],root[p], 1, n, x, y);
        } else if(op == 1){
            scanf("%d", &q);
            root[p] = merge(root[p], root[q], 1, n);
        } else if(op == 2){
            scanf("%d%d", &x, &q);
            change(root[p], 1, n, q, x);
        } else if(op == 3){
            scanf("%d%d", &x, &y);
            printf("%lld\n", ask(root[p], 1, n, x, y));
        } else {
            ll x;
            scanf("%lld", &x);
            printf("%lld\n", ask(root[p], 1, n, x));
        }
    }

    return 0;
}

分块

莫队

#include <iostream>
#include <algorithm>
#include <math.h>
#include <cstdio>
using namespace std;
const int N = 50010;
typedef long long ll;
int a[N],be[N],n,m;
ll res = 0,sum[N];
struct node{
    int l,r,id;
    ll A,B;
}q[N];
//如果在同一块,则按照右端点排序,否则按照左端点
bool cmp1(node a,node b){
    return be[a.l] == be[b.l] ? a.r < b.r : a.l < b.l;
}
bool cmp(node a,node b){
    return a.id < b.id;
}
ll gcd(ll a,ll b){return b == 0 ? a : gcd(b,a%b);}
ll S(ll x){return x * x;}
//先减去上一次的影响,修改后再重新加新的影响
void move(int pos,int add){res -= S(sum[a[pos]]);sum[a[pos]] += add;res += S(sum[a[pos]]);}
int main(){
    scanf("%d%d",&n,&m);
    int base = sqrt(n);
    for(int i=1;i<=n;i++){
        scanf("%d",&a[i]);q[i].id = i;
        be[i] = (i-1) / base + 1;//be[i]即i在第几块
    }
    for(int i=1;i<=m;i++)scanf("%d%d",&q[i].l,&q[i].r);
    sort(q+1,q+1+m,cmp1);
    int l = 1,r = 0;
    res = 0;//res为当点询问区间内出现的所有颜色的个数平方和
    for(int i=1;i<=m;i++){
        //暴力调整区间,维护res
        while(l < q[i].l)move(l++,-1);
        while(l > q[i].l)move(--l,1);
        while(r < q[i].r)move(++r,1);
        while(r > q[i].r)move(r--,-1);
        if(l == r){
            q[i].A = 0;q[i].B = 1;continue;
        }
        q[i].A  = res - (r - l + 1);//计算答案分子部分
        q[i].B = 1ll * (r - l + 1) * (r - l);//分母部分
        ll g = gcd(q[i].A,q[i].B);//约分
        q[i].A /= g;
        q[i].B /= g;
    }
    sort(q+1,q+1+m,cmp);
    for(int i=1;i<=m;i++){
        printf("%lld/%lld\n",q[i].A,q[i].B);
    }
    return 0;
}

莫队优化

bool cmp1(node a,node b){
    return be[a.l] == be[b.l] ? 
        (be[a.l]&1 ? a.r < b.r : a.r > b.r)
        : a.l < b.l;
}

带修莫队

#include <bits/stdc++.h>
using namespace std;
const int N = 10010;
struct Query
{
    int l,r,t,id;
}q[N];
struct Modify
{
    int pos,New,Old;
}c[N];
int n,m,a[N],num[100*N],be[N],res,ans[N],l=1,r,now[N];
char op[3];
bool cmp(Query a,Query b){
    return be[a.l] == be[b.l] ? (be[a.r] == be[b.r] ? a.t < b.t : (be[a.l]&1 ? a.r < b.r : a.r > b.r)) : a.l < b.l;
}
void move(int pos,int add){
    num[a[pos]]+=add;
    if(num[a[pos]] == 0 && add < 0)
        res--;
    else if(num[a[pos]] == 1 && add > 0)
        res++;
}
void changeTime(int pos,int dat){
    if(pos >= l && pos <= r){
        move(pos,-1);
        a[pos] = dat;
        move(pos,1);
    }
    else a[pos] = dat;
}
int main(){
    scanf("%d%d",&n,&m);
    int base = pow(n,0.666666);
    for(int i=1;i<=n;i++){
        scanf("%d",&a[i]);
        now[i] = a[i];be[i] = (i-1) / base + 1;
    }
    int t = 0,cur = 0;
    for(int i=1;i<=m;i++){
        int x,y;scanf("%s%d%d",op,&x,&y);
        if(op[0] == 'Q')q[++t] = {x,y,cur,t};
        else c[++cur] = {x,y,now[x]},now[x] = y;
    }
    sort(q+1,q+t+1,cmp);
    cur = 0;
    for(int i=1;i<=t;i++){
        while(cur < q[i].t){
            changeTime(c[cur+1].pos,c[cur+1].New);cur++;
        }
        while(cur > q[i].t){
            changeTime(c[cur].pos,c[cur].Old);cur--;
        }
        while(l < q[i].l)move(l++,-1);
        while(l > q[i].l)move(--l,1);
        while(r < q[i].r)move(++r,1);
        while(r > q[i].r)move(r--,-1);
        ans[q[i].id] = res;
    }
    for(int i=1;i<=t;i++)printf("%d\n",ans[i]);
    return 0;
}

树上莫队

#include <bits/stdc++.h>
using namespace std;
const int N = 40010;
const int M = 100010;
vector<int> G[N],alls;
int be[N],f[N][19],n,m,ans[M],dep[N],u=1,v=1,sum[N],vis[N],a[N],base,cnt;
int res;
int st[N],top;
struct Query{
    int l,r;
    int id;
}q[M];
void dfs(int x,int fa = -1){
    for(int i=1;i<18;i++)
        f[x][i] = f[f[x][i-1]][i-1];
    int bottom = top;
    for(int i = 0;i<G[x].size();i++){
        int y = G[x][i];
        if(y == fa)continue;
        dep[y] = dep[x] + 1;
        f[y][0] = x;
        dfs(y,x);
        if(top - bottom >= base){
            cnt++;
            while(top != bottom){
                be[st[top--]] = cnt;
            }
        }
    }
    st[++top] = x;
}
bool cmp(Query a,Query b){
    return be[a.l] == be[b.l] ? be[a.r] < be[b.r] : be[a.l] < be[b.l];
}
int LCA(int x,int y){
    if(dep[x] > dep[y])swap(x,y);
    for(int i=18;i>=0;i--)if(dep[x] <= dep[f[y][i]]) y = f[y][i];
    if(x == y)return x;
    for(int i=18;i>=0;i--)if(f[x][i] != f[y][i])x = f[x][i],y = f[y][i];
    return f[x][0];
}
void Run(int u){
    if(vis[u] == 1){
        vis[u] = 0;
        if(--sum[a[u]] == 0)res--;
    }
    else{
        vis[u] = 1;
        if(sum[a[u]]++ == 0)res++;
    }
}
void move(int x,int y){
    if(dep[x] < dep[y])swap(x,y);
    while(dep[x] > dep[y])Run(x),x = f[x][0];
    while(x != y)Run(x),Run(y),x = f[x][0],y = f[y][0];
}
int main(){
    scanf("%d%d",&n,&m);
    base = sqrt(n);
    for(int i=1;i<=n;i++){
        scanf("%d",&a[i]);
        alls.push_back(a[i]);
    }
    /*离散化*/
    sort(alls.begin(),alls.end());
    alls.erase(unique(alls.begin(),alls.end()),alls.end());
    for(int i=1;i<=n;i++){
        int id = lower_bound(alls.begin(),alls.end(),a[i]) - alls.begin() + 1;
        a[i] = id;
    }
    //存树
    for(int i=1;i<n;i++){
        int x,y;scanf("%d%d",&x,&y);
        G[x].push_back(y);
        G[y].push_back(x);
    }
    dep[1] = 1;//这里如果不单独设为wa
    dfs(1);
    while(top)be[st[top--]] = cnt;
    //存询问
    for(int i=1;i<=m;i++){
        scanf("%d%d",&q[i].l,&q[i].r);
        q[i].id = i;
    }
    sort(q+1,q+1+m,cmp);
    for(int i=1;i<=m;i++){
        if(u != q[i].l){move(u,q[i].l);u=q[i].l;}
        if(v != q[i].r){move(v,q[i].r);v=q[i].r;}
        int anc = LCA(u,v);
        Run(anc);//单独考虑LCA
        ans[q[i].id] = res;
        Run(anc);//
    }
    for(int i=1;i<=m;i++)printf("%d\n",ans[i]);
    return 0;
}

分块套路

#include <iostream>
#include <cstdio>
#include <math.h>

using namespace std;
typedef long long ll;
const int N = 100010;
ll a[N],sum[N],add[N];
//每段左右端点,每个位置所处哪一段
int L[N],R[N],pos[N];
int n,m,t;
void change(int l,int r,ll d){
    int p = pos[l],q = pos[r];
    if(p == q){
        for(int i=l;i<=r;i++)a[i] += d;
        sum[p] += d * (r - l + 1);
    }
    else{
        for(int i = p + 1;i <= q-1;i++)add[i] += d;
        for(int i = l;i <= R[p];i++)a[i] += d;
        sum[p] += d * (R[p] - l + 1);
        for(int i=L[q];i<=r;i++)a[i] += d;
        sum[q] += d * (r - L[q] + 1);
    }
}
ll ask(int l,int r){
    int p = pos[l], q = pos[r];
    ll res = 0;
    if(p == q){
        for(int i=l;i<=r;i++)res += a[i];
        res += add[p] * (r-l+1);
    }
    else{
        for(int i=l;i<=R[p];i++)res += a[i];
        res += add[p] * (R[p] - l + 1);
        for(int i=L[q];i<=r;i++)res += a[i];
        res += add[q] * (r - L[q] + 1);
        for(int i=p+1;i<=q-1;i++)res += sum[i] + add[i] * (R[i] - L[i] + 1);
    }
    return res;
}
int main(){
    scanf("%d%d",&n,&m);
    for(int i=1;i<=n;i++)scanf("%lld",&a[i]);
    t = sqrt(n);
    for(int i=1;i<=t;i++){
        L[i] = (i-1) * t+1;
        R[i] = i * t;
    }
    if(R[t] < n) t++,L[t] = R[t-1]+1,R[t] = n;
    for(int i=1;i<=t;i++){
        for(int j=L[i];j<=R[i];j++){
            pos[j] = i;
            sum[i] += a[j];
        }
    }
    //指令
    while(m--){
        char op[3];int l,r,d;
        scanf("%s%d%d",op,&l,&r);
        if(op[0] == 'C'){
            scanf("%d",&d);
            change(l,r,d);
        }
        else printf("%lld\n",ask(l,r));
    }
    return 0;
}

主席树

静态区间第k大

const int N = 200000 + 5;
struct Seg{
    int ls, rs;
    int sum;
}t[N*40];
int rt[N], tot;
vector<int> all;
int n, a[N], l, r, k, m;
int build(int l, int r){
    int p = ++tot;
    if(l == r) {
        t[p].sum = 0;
        return p;
    }
    int mid = l + r >> 1;
    t[p].ls = build(l, mid);
    t[p].rs = build(mid+1, r);
    t[p].sum = 0;
    return p;
}
int insert(int now, int l, int r, int pos, int val){
    int p = ++tot;
    t[p] = t[now];
    if(l == r){
        t[p].sum += val;
        return p;
    }
    int mid = l + r >> 1;
    if(pos <= mid) t[p].ls = insert(t[now].ls, l, mid, pos, val);
    else t[p].rs = insert(t[now].rs, mid+1, r, pos, val);
    t[p].sum = t[t[p].ls].sum + t[t[p].rs].sum;
    return p;
}
int ask(int p, int q, int l, int r, int k){
    if(l == r) return l;
    int mid = (l + r) >> 1;
    int lcnt = t[t[q].ls].sum - t[t[p].ls].sum;
    if(k <= lcnt) return ask(t[p].ls, t[q].ls, l, mid, k);
    else return ask(t[p].rs, t[q].rs, mid+1, r, k - lcnt);
}
int main(){
    scanf("%d%d", &n, &m);
    for(int i=1;i<=n;i++){
        scanf("%d", &a[i]);
        all.push_back(a[i]);
    }
    sort(all.begin(),all.end());
    all.erase(unique(all.begin(),all.end()),all.end());
    for(int i=1;i<=n;i++){
        a[i] = lower_bound(all.begin(),all.end(),a[i]) - all.begin() + 1;
    }
    rt[0] = build(1, all.size());
    for(int i=1;i<=n;i++){
        rt[i] = insert(rt[i-1], 1, all.size(), a[i], 1);
    }
    while(m--){
        scanf("%d%d%d", &l, &r, &k);
        printf("%d\n", all[ask(rt[l-1], rt[r], 1, all.size(), k) - 1]);
    }
    return 0;
}

树套树

树状数组套主席树

例题选自 2019徐州ICPC H

区间维护mex

using namespace std;
using ll = long long;
#define dbg(x...) do { cout << "\033[32;1m" << #x << " -> "; err(x); } while (0)
void err() { cout << "\033[39;0m" << endl; }
template<class T, class... Ts> void err(const T& arg, const Ts&... args) { cout << arg << " "; err(args...); }
const int N = 2e5 + 10;
int n, m, q, a[N], L[30][30], R[30][30], cl, cr;
inline int lowbit(int x) { return x & -x; }
struct SEG {
    struct node {
        int ls, rs;
        ll sum;
        void init() { ls = rs = sum = 0; }
    }t[N * 80];
    int rt[N], tot;
    ll res;
    int newnode() {
        ++tot;
        t[tot].init();
        return tot;
    }
    void init() { memset(rt, 0, sizeof rt); tot = 0; }
    void update(int &rt, int l, int r, int pos, int v) {
        if (!rt) rt = newnode();
        t[rt].sum += v;
        if (l == r) return;
        int mid = (l + r) >> 1;
        if (pos <= mid) update(t[rt].ls, l, mid, pos, v);
        else update(t[rt].rs, mid + 1, r, pos, v);
    }
    void update(int x, int pos, int v) {
        for (; x <= n; x += lowbit(x)) {
            update(rt[x], 1, m, pos, v); 
        }
    }
    void query(int dep, int l, int r, int ql, int qr) {
        if (ql > qr) return;
        if (l >= ql && r <= qr) {
            for (int i = 1; i <= cl; ++i) res -= t[L[dep][i]].sum;
            for (int i = 1; i <= cr; ++i) res += t[R[dep][i]].sum;
            return;
        }   
        int mid = (l + r) >> 1;
        if (ql <= mid) {
            for (int i = 1; i <= cl; ++i) L[dep + 1][i] = t[L[dep][i]].ls;
            for (int i = 1; i <= cr; ++i) R[dep + 1][i] = t[R[dep][i]].ls;
            query(dep + 1, l, mid, ql, qr);
        } 
        if (qr > mid) {
            for (int i = 1; i <= cl; ++i) L[dep + 1][i] = t[L[dep][i]].rs;
            for (int i = 1; i <= cr; ++i) R[dep + 1][i] = t[R[dep][i]].rs;
            query(dep + 1, mid + 1, r, ql, qr);
        }
    }
}seg;

int main() {
    m = 2e5;
    while (scanf("%d%d", &n, &q) != EOF) {
        for (int i = 1; i <= n; ++i) scanf("%d", a + i);
        seg.init();
        for (int i = 1; i <= n; ++i) {
            seg.update(i, a[i], a[i]); 
        }
        int op, x, y;
        for (int i = 1; i <= q; ++i) {
            scanf("%d%d%d", &op, &x, &y);
            if (op == 1) {
                seg.update(x, a[x], -a[x]);
                a[x] = y;
                seg.update(x, a[x], a[x]); 
            } else {
                --x;
                cl = cr = 0;
                for (int j = x; j; j -= lowbit(j)) {
                    L[0][++cl] = seg.rt[j];
                }
                for (int j = y; j; j -= lowbit(j)) {
                    R[0][++cr] = seg.rt[j];
                }
                ll l = 0, r = 0;
                do{
                    r = l + 1;
                    seg.res = 0;
                    seg.query(0, 1, m, 1, min(1ll * m, r));
                    l = seg.res;
                } while (l >= r);
                printf("%lld\n", l + 1);
            }
        }
    }
    return 0;
}

线段树套线段树

常数比较大

const int N = 50000 + 5;
int rt[N << 2], n, m, maxn, tot;
int b[N * 2], totn, L[N], R[N], op[N];
ll K[N];
struct SegTree{
    int l, r;
    int tag;
    ll sz;
} t[N * 400];
void pushdown(int p, int l, int r){
    if(t[p].tag){
        if(!t[p].l)
            t[p].l = ++tot;
        if(!t[p].r)
            t[p].r = ++tot;
        int ls = t[p].l, rs = t[p].r, &v = t[p].tag, mid = l + r >> 1;
        t[ls].tag += v, t[rs].tag += v;
        t[ls].sz += v * (mid - l + 1);
        t[rs].sz += v * (r - mid);
        v = 0;
    }
}
void update(int &p, int l,int r,int ql, int qr){
    if(!p)
        p = ++tot;
    if(l >= ql && r <= qr){
        t[p].tag++;
        t[p].sz += r - l + 1;
        return;
    }
    pushdown(p, l, r);
    int mid = l + r >> 1;
    if(mid >= ql)
        update(t[p].l, l, mid, ql, qr);
    if(mid < qr)
        update(t[p].r, mid + 1, r, ql, qr);
    t[p].sz = t[t[p].l].sz + t[t[p].r].sz;
}
void add(int p, int l, int r, int pos, int ql, int qr){
    update(rt[p], 1, n, ql, qr);
    if(l == r)
        return;
    int mid = l + r >> 1;
    if(pos <= mid)
        add(p * 2, l, mid, pos, ql, qr);
    else
        add(p * 2 + 1, mid + 1, r, pos, ql, qr);
}
ll getsum(int &p, int l,int r,int ql, int qr){
    if(!p)
        return 0;
    if(l >= ql && r <= qr)
        return t[p].sz;
    pushdown(p, l, r);
    int mid = l + r >> 1;
    ll res = 0;
    if(ql <= mid)
        res += getsum(t[p].l, l, mid, ql, qr);
    if(mid < qr)
        res += getsum(t[p].r, mid + 1, r, ql, qr);
    return res;
}
// [l,r] 是权值线段树区间 ,[ql,qr]是询问区间
int query(int p, int l,int r, int ql,int qr, ll x){
    if(l == r)
        return b[l];
    int mid = l + r >> 1;
    ll cnt = getsum(rt[p * 2 + 1], 1, n, ql, qr);
    //cout << l << ' ' << r << ' ' << cnt << endl;
    if(cnt < x)
        return query(p * 2, l, mid, ql, qr, x - cnt);
    else
        return query(p * 2 + 1, mid + 1, r, ql, qr, x);
}
int main() {
    scanf("%d%d", &n, &m);
    for (int i = 1; i <= m;i++){
        scanf("%d%d%d%lld", &op[i], &L[i], &R[i], &K[i]);
        if(op[i] == 1){
            b[++totn] = K[i];
        }
    }
    sort(b + 1, b + 1 + totn);
    totn = unique(b + 1, b + 1 + totn) - b - 1;
    for (int i = 1; i <= m;i++){
        if(op[i] == 1){
            K[i] = lower_bound(b + 1, b + 1 + totn, K[i]) - b;
            add(1, 1, totn, K[i], L[i], R[i]);
        } else {
            printf("%d\n", query(1, 1, totn, L[i], R[i], K[i]));
        }
    }
    return 0;
}

四. 图论

最短路

1. Dijkstra

\(n^2\)

const int N = 3010 + 5;
int a[N][N], d[N], n, m;
bool v[N];
void dijkstra(){
    memset(d, 0x3f, sizeof d);
    memset(v, 0, sizeof v);
    d[1] = 0;
    for(int i=1;i<n;i++){ // 重复进行 n-1 次
        int x = 0;
        for(int j=1;j<=n;j++){
            if(!v[j] && (x == 0 || d[j] < d[x])) x = j;
        }
        v[x] = 1;
        for(int y = 1; y <= n; y++)
            d[y] = min(d[y], d[x] + a[x][y]);
    }
}

\((m+n)\log n\)

const int N = 100010;
const int M = 1000010;
int head[N], ver[M], edge[M], nxt[M], d[N];
bool v[N];
int n, m, tot, s;
typedef pair<int,int> pii;
priority_queue<pii,vector<pii>, greater<pii> >q;
void add(int x, int y, int z){ver[++tot] = y,edge[tot] = z, nxt[tot]=head[x],head[x] = tot; }
void dijkstra(){
    memset(d, 0x3f, sizeof d);
    memset(v, 0, sizeof v);
    d[1] = 0;
    q.push(make_pair(0,1));
    while(q.size()){
        int x = q.top().second;q.pop();
        if(v[x])continue;
        v[x] = 1;
        for(int i=head[x];i;i=nxt[i]){
            int y = ver[i];
            if(d[y] > d[x] + edge[i]){
                d[y] = d[x] + edge[i];
                q.push({d[y], y});
            }
        }
    }
}
int main() {
    scanf("%d%d%d",&n,&m,&s);
    for(int i=1,x,y,z;i<=m;i++){
        scanf("%d%d%d",&x,&y,&z);
        add(x,y,z);//此模板为有向图
    }
    dijkstra();
    for(int i=1;i<=n;i++)printf("%d ",d[i]);
    return 0;
}

2. SPFA

\(O(NM)\)

const int N = 100000 + 5;
const int M = 1000010;
int head[N], ver[M], edge[M], nxt[M], d[N];
bool v[N];
int n, m, tot, s;
queue<int> q;
void add(int x, int y, int z){ver[++tot] = y,edge[tot] = z, nxt[tot]=head[x],head[x] = tot; }
void spfa(){
    memset(d, 0x3f, sizeof d);
    memset(v, 0, sizeof v);
    d[1] = 0, v[1] = 1;
    q.push(1);
    while(q.size()){
        int x = q.front();q.pop();
        v[x] = 0;
        for(int i=head[x];i;i=nxt[i]){
            int y = ver[i];
            if(d[y] > d[x] + edge[i]){
                d[y] = d[x] + edge[i];
                if(!v[y]) q.push(y), v[y] = 1;
            }
        }
    }
}

int main() {
    scanf("%d%d%d",&n,&m,&s);
    for(int i=1,x,y,z;i<=m;i++){
        scanf("%d%d%d",&x,&y,&z);
        add(x,y,z);//此模板为有向图
    }
    spfa();
    for(int i=1;i<=n;i++)printf("%d ",d[i]);
    return 0;
}

3. Floyd

\(O(n^3)\) 可以用来求传递闭包

void floyd(){
    for(int k=1;k<=n;k++)
        for(int i=1;i<=n;i++)
            for(int j=1;j<=n;j++)
                d[i][j] = min(d[i][j], d[i][k] + d[k][j]);
}

Johnson

利用势能与路径无关,至于起点和终点有关的性质,将负权边转换为正权边,进而利用dijkstra堆优化快速求解最短路

const int N = 3000 + 5;
const int M = 20000 + 5;
int n,m;
int head[N], ver[M], nxt[M], edge[M], tot;
int h[N],d[N],v[N],cnt[N];
priority_queue<pair<int,int> > q;
void add(int x, int y, int z){
    ver[++tot] = y, edge[tot] = z, nxt[tot] = head[x], head[x] = tot;
}
bool spfa(){
    memset(h, 0x3f, sizeof h);
    memset(v, 0, sizeof v);
    queue<int> q;
    q.push(0);
    h[0] = 0;
    v[0] = 1;
    while(q.size()){
        int x = q.front();q.pop();
        v[x] = 0;
        for(int i=head[x];i;i=nxt[i]){
            int y = ver[i];
            if(h[y] > h[x] + edge[i]){
                h[y] = h[x] + edge[i];
                cnt[y] = cnt[x] + 1;
                if(cnt[y] >= n) return false;
                if(!v[y]) q.push(y), v[y] = 1;
            }
        }
    }
    return true;
}
void dijkstra(int s){
    memset(d, 0x3f, sizeof d);
    memset(v, 0, sizeof v);
    q.push({0, s});d[s] = 0;
    while(q.size()){
        int x = q.top().second;q.pop();
        if(v[x])continue;
        v[x] = 1;
        for(int i=head[x];i;i=nxt[i]){
            int y = ver[i];
            if(d[y] > d[x] + edge[i]){
                d[y] = d[x] + edge[i];
                q.push({-d[y],y});
            }
        }
    }
    ll res = 0;
    for(int i=1;i<=n;i++){
        if(d[i] == inf) res += 1ll * i * 1e9;
        else {
            // d[i] = f[i] + h[s] - h[i];
            d[i] -= h[s] - h[i];
            res += 1ll * i * d[i];
        }
    }
    printf("%lld\n",res);
}
int main() {
    scanf("%d%d",&n,&m);
    for(int i=1,x,y,z;i<=m;i++){
        scanf("%d%d%d",&x,&y,&z);
        add(x,y,z);
    }
    for(int i=1;i<=n;i++) add(0,i,0);
    if(!spfa()){
        puts("-1");
        return 0;
    }
    for(int x=1;x<=n;x++){
        for(int i=head[x];i;i=nxt[i]){
            int y = ver[i];
            edge[i] = edge[i] + h[x] - h[y];
        }
    }
    for(int x=1;x<=n;x++){
        dijkstra(x);
    }
    return 0;
}

最小生成树

1. Kruskal

\(O(m\log m)\) 当边权比较小时可以直接桶排,降低复杂度(2019上海区域赛E)

struct rec{int x,y,z;} edge[500010];
int fa[100010], n, m, ans;
bool operator < (rec a, rec b){
    return a.z < b.z;
}
int find(int x){return x == fa[x] ? x : fa[x] = find(fa[x]);}
int main() {
    scanf("%d%d",&n,&m);
    for(int i=1;i<=m;i++)scanf("%d%d%d",&edge[i].x,&edge[i].y,&edge[i].z);
    sort(edge+1,edge+m+1);
    for(int i=1;i<=n;i++) fa[i] = i;
    for(int i=1;i<=m;i++){
        int x = find(edge[i].x);
        int y = find(edge[i].y);
        if(x == y)continue;
        fa[x] = y;
        ans += edge[i].z;
    }
    cout << ans << endl;
    return 0;
}

2. Prim

\(O(n^2)\)

const int N = 3000 + 5;
int a[N][N], d[N], n, m, ans;
bool v[N];
void prim(){
    memset(d, 0x3f, sizeof d);
    memset(v, 0, sizeof v);
    d[1] = 0;
    for(int i=1;i < n;i++){
        int x = 0;
        for(int j=1;j<=n;j++)
            if(!v[j] && (x == 0 || d[j] < d[x])) x = j;
        v[x] = 1;
        for(int y=1;y<=n;y++)
            if(!v[y])d[y] = min(d[y], a[x][y]);
    }
}
int main() {
    cin >> n >> m;
    memset(a, 0x3f, sizeof a);
    for(int i=1;i<=n;i++) a[i][i] = 0;
    for(int i=1;i<=m;i++){
        int x,y,z;
        scanf("%d%d%d",&x,&y,&z);
        a[y][x] = a[x][y] = min(a[x][y], z);
    }   
    prim();
    for(int i=2;i<=n;i++) ans += d[i];
    cout << ans << endl;
    return 0;
}

\(O(m\log n)\)

const int N = 400010;
int n,m,st,ed;
int head[N],ver[N],nxt[N],edge[N],tot;
int d[N],v[N];
inline void add(int x,int y,int z){
    ver[++tot] = y;edge[tot] = z;nxt[tot] = head[x];head[x] = tot;
}
int x,y,z;
int main() 
{
    scanf("%d%d",&n,&m);
    for(int i=1;i<=m;i++){
        scanf("%d%d%d",&x,&y,&z);
        add(x,y,z);
        add(y,x,z);
    }
    memset(d,0x3f,sizeof d);
    priority_queue<pair<int,int> > q;
    q.push({0,1});d[1] = 0;
    ll res = 0;
    while(q.size()){
        int x = q.top().second;q.pop();
        if(v[x])continue;
        res += d[x];
        v[x] = 1;
        for(int i=head[x];i;i=nxt[i]){
            int y = ver[i];
            if(d[y] > edge[i]){
                d[y] = edge[i];
                q.push({-d[y],y});
            }
        }
    }
    cout << res << endl;
    return 0;
}

最小斯坦纳树

给定一个包含 \(n\) 个结点和 \(m\) 条带权边的无向连通图 \(G=(V,E)\)
再给定包含 \(k\) 个结点的点集 \(S\),选出 \(G\) 的子图 \(G'=(V',E')\) 使得:

  1. \(S\subseteq V'\)
  2. \(G′\) 为连通图;
  3. \(E′\) 中所有边的权值和最小。
    你只需要求出 \(E′\)中所有边的权值和。

\(dp[i][s]\) 表示 以 i 为根的一棵树,包含集合 S 中所有点的最小代价

  1. \(w[i][j] + dp[j][s] -> dp[i][s]\)
  2. \(dp[i][T] + dp[i][S-T] -> dp[i][S]\quad(T \subseteq S)\)

第二类转移可以用枚举子集来转移,第一类转移是一个三角不等式,可以用spfa或者dijkstra

const int N = 100 + 5;
const int M = 1010;
int n, m, k, x, y, z, tot;
int head[N], ver[M], nxt[M], edge[M], dp[N][4200];
int p[N], vis[N];
priority_queue<pair<int,int>> q;
void add(int x, int y, int z){
    ver[++tot] = y; edge[tot] = z, nxt[tot] = head[x], head[x] = tot;
}
void dijkstra(int s){
    memset(vis, 0, sizeof vis);
    while(q.size()){
        auto t = q.top();q.pop();
        int x = t.second;
        if(vis[x]) continue;
        vis[x] = 1;
        for(int i=head[x];i;i=nxt[i]){
            int y = ver[i];
            if(dp[y][s] > dp[x][s] + edge[i]){
                dp[y][s] = dp[x][s] + edge[i];
                q.push(make_pair(-dp[y][s], y));
            }
        }
    }
}
int main(){
    scanf("%d%d%d", &n, &m, &k);
    for(int i=1;i<=m;i++){
        scanf("%d%d%d", &x, &y, &z);
        add(x, y, z);add(y, x, z);
    }
    memset(dp, 0x3f, sizeof dp);
    for(int i=1;i<=k;i++){
        scanf("%d", &p[i]);
        dp[p[i]][1<<(i-1)] = 0;
    }
    for(int s = 1; s < (1 << k); s++){
        for(int i=1; i <= n; i++){
            for(int subs = (s-1)&s; subs; subs = s & (subs-1)){
                dp[i][s] = min(dp[i][s], dp[i][subs]+dp[i][s^subs]);
            }
            if(dp[i][s]!=inf) q.push(make_pair(-dp[i][s], i));
        }
        dijkstra(s);
    }
    printf("%d\n", dp[p[1]][(1<<k)-1]);

    return 0;
}

树的直径

树形dp

void dp(int x){
    v[x] = 1;
    for(int i=head[x];i;i=nxt[i]){
		int y = ver[i];
        if(v[y])continue;
        dp(y);
        ans = max(ans, d[x] + d[y] + edge[i]);
        d[x] = max(d[x], d[y], edge[i]);
    }
}

两次dfs或bfs,bfs可以记录路径

const int N = 200010;
vector<pair<int,int> > v[N];
int n, pre[N], vis[N],mark[N];
ll d[N];
int bfs(int s){
    queue<int> q;
    q.push(s);
    memset(vis, 0, sizeof vis);
    memset(d, 0, sizeof d);
    memset(pre, 0, sizeof pre);
    vis[s] = d[s] = 0;
    int t = s;
    while(q.size()){
        int x = q.front();
        q.pop();
        if(d[x] > d[t])***
            t = x;
        vis[x] = 1;
        for (int i = 0; i < v[x].size();i++){
            int y = v[x][i].first;
            if(vis[y])
                continue;
            d[y] = d[x] + v[x][i].second;
            pre[y] = x;****
            q.push(y);
        }
    }
    return t;
}
int main(){
    scanf("%d", &n);
    for (int i = 1,x, y, z; i < n;i++){
        scanf("%d%d%d", &x, &y, &z);
        v[x].push_back({y, z});
        v[y].push_back({x, z});
    }
    int s = bfs(1);
    int t = bfs(s);
    int p = t, np = pre[t];
    ll len = d[t];
    cout << len << endl;
    while(p != s){
        mark[p] = 1;
        p = pre[p];
        mark[p] = 1;
    }
    p = t;
    return 0;
}

树上启发式合并

求每个子树上不同颜色的个数

// U41492
#include <cstdio>
#include <iostream>
#include <cmath>
#include <string>
#include <cstring>
#include <algorithm>
#include <vector>
#include <queue>
using namespace std;
typedef long long ll;
const int inf = 0x3f3f3f3f;
const int N = 100000 + 5;
int c[N], cou[N], res[N], son[N];
int dfn[N], cid[N],sz[N];
int cnt, num;
vector<int> v[N];
int n,m;
void dfs(int x, int fa){
    dfn[x] = ++cnt, cid[cnt] = x;
    sz[x] = 1;
    for(int i=0;i<v[x].size();i++){
        int y = v[x][i];
        if(y == fa)continue;
        dfs(y,x);
        sz[x] += sz[y];
        if(son[x] == 0 || sz[y] > sz[son[x]]) son[x] = y;
    }   
}
//核心思想即所有重边只会走一次,
void get(int x, int fa, int flag){
    for(int i=0;i<v[x].size();i++){
        int y = v[x][i];
        if(y == fa || y == son[x])continue;//不保存答案遍历时,一定不能遍历重儿子
        get(y, x, 0);
    }
    if(son[x]) get(son[x], x, 1);
    for(int i=0;i<v[x].size();i++){
        int y = v[x][i];
        if(y == fa || y == son[x])continue;
        for(int j=dfn[y];j<=dfn[y]+sz[y]-1;j++){
            if(++cou[c[cid[j]]] == 1) num++;
        }
    }
    if(++cou[c[x]] == 1)num++;
    res[x] = num;
    if(flag == 0){
        for(int j=dfn[x];j<=dfn[x]+sz[x]-1;j++){
            if(--cou[c[cid[j]]] == 0) num--;
        }
    }
}
int main() {
    scanf("%d",&n);
    for(int i=1;i<n;i++){
        int x,y;scanf("%d%d",&x,&y);
        v[x].push_back(y);
        v[y].push_back(x);
    }
    for(int i=1;i<=n;i++)scanf("%d",&c[i]);
    dfs(1, 0);
    get(1, 0, 0);
    scanf("%d",&m);
    while(m--){
        int x;scanf("%d",&x);
        printf("%d\n",res[x]);
    }
    return 0;
}

点分治

求是否存在路径权值和为k的路径

const int N = 10000 + 5;
const int M = 20010;
int head[N], ver[M], edge[M], nxt[M];
int sz[N], del[N], dis[N], st[N], q[N], cnt, top;
int query[101], res[N];
bool has[10000010];
int n, m, tot, all, core, min_size;
void add(int x, int y, int z){
    ver[++tot] = y, nxt[tot] = head[x], edge[tot] = z, head[x] = tot;
}
void getsize(int x, int fa){
    sz[x] = 1;
    int mx = 0;
    for(int i=head[x];i;i=nxt[i]){
        int y = ver[i];
        if(y == fa || del[y]) continue;
        getsize(y, x);
        mx = max(mx, sz[y]);
        sz[x] += sz[y];
    }
    mx = max(mx, all - sz[x]);
    if(mx < min_size) {min_size = mx, core = x;}
}
void getdis(int x, int fa){
    if(dis[x] <= 10000000)
        st[++cnt] = x, q[++top] = x;
    for(int i=head[x];i;i=nxt[i]) {
        int y = ver[i];
        if(del[y] || y == fa) continue;
        dis[y] = dis[x] + edge[i];
        getdis(y, x);
    }
}
void get(int x){
    cnt = top = 0;
    del[x] = 1;
    dis[x] = 0;
    has[dis[x]] = true;
    q[++top] = x;
    for(int i=head[x];i;i=nxt[i]){
        int y = ver[i];
        if(del[y]) continue;
        dis[y] = edge[i];
        cnt = 0;
        getdis(y, x);
        for(int j=1;j<=cnt;j++){
            for(int k=1;k<=m;k++){
                if(query[k] >= dis[st[j]]){
                    res[k] |= has[query[k] - dis[st[j]]];
                }
            }
        }
        for(int j=1;j<=cnt;j++) has[dis[st[j]]] = true;
    }
    for(int i=1;i<=top;i++) has[dis[q[i]]] = false;
    for(int i=head[x];i;i=nxt[i]){
        int y = ver[i];
        if(del[y]) continue;
        min_size = inf; all = sz[y];
        getsize(y, 0);
        getsize(core, 0);
        get(core);
    }
}
int main(){
    scanf("%d%d", &n, &m);
    for(int i=1;i<n;i++){
        int x, y, z;scanf("%d%d%d", &x, &y, &z);
        add(x, y, z);
        add(y, x, z);
    }
    for(int i=1;i<=m;i++) scanf("%d", &query[i]);
    min_size = inf;
    all = n;
    core = 0;
    getsize(1, 0);
    getsize(core, 0);
    get(core);
    for(int i=1;i<=m;i++) puts(res[i] ? "AYE" : "NAY");
    return 0;
}

最近公共祖先

1. 倍增

onst int SZ = 50010;
int f[SZ][20],d[SZ],dist[SZ];//开足空间
int ver[2*SZ],nxt[2*SZ],edge[2*SZ],head[2*SZ];
int T,n,m,tot,t;
queue<int> q;
void add(int x,int y,int z){
    ver[++tot] = y;
    edge[tot] = z;
    nxt[tot] = head[x];
    head[x] = tot;
}
void bfs(){ // dfs或者bfs都可以,d[1]一定要为1
    q.push(1);d[1] = 1;
    while(q.size()){
        int x = q.front();q.pop();
        for(int i=head[x];i;i=nxt[i]){
            int y = ver[i];
            if(d[y])continue;
            d[y] = d[x] + 1;
            dist[y] = dist[x] + edge[i];
            f[y][0] = x;
            for(int j=1;j<=t;j++)
                f[y][j] = f[f[y][j-1]][j-1];
            q.push(y);
        }
    }
}
int lca(int x,int y){
    if(d[x] > d[y])swap(x,y);//x在y上面
    for(int i=t;i>=0;i--){
        if(d[f[y][i]] >= d[x]) y = f[y][i];//不断往上面调整
    }
    if(x == y)return x;
    for(int i=t;i>=0;i--){
        if(f[x][i] != f[y][i]) x = f[x][i],y = f[y][i];
    }
    return f[x][0];
}

3. Tarjan

线性离线,不太常用,但离线,结合并查集的思想值得借鉴

#include <bits/stdc++.h>
using namespace std;
const int N = 50010;
int ver[2*N],nxt[2*N],edge[2*N],head[N];
int fa[N],d[N],v[N],lca[N],ans[N];
vector<int> query[N],query_id[N];
int T,n,m,tot,t;
void add(int x,int y,int z){
    ver[++tot] = y;edge[tot] = z;nxt[tot] = head[x];head[x] = tot;
}
void add_query(int x,int y,int id){
    query[x].push_back(y);query_id[x].push_back(id);
    query[y].push_back(x);query_id[y].push_back(id);
}
int find(int x){
    return x==fa[x]?x:fa[x] = find(fa[x]);
}
void tarjan(int x){
    v[x] = 1;
    for(int i=head[x];i;i=nxt[i]){
        int y = ver[i];
        if(v[y])continue;
        d[y] = d[x] + edge[i];
        tarjan(y);
        fa[y] = x;
    }
    for(int i=0;i<query[x].size();i++){
        int y = query[x][i],id = query_id[x][i];
        if(v[y] == 2){
            int lca = find(y);
            ans[id] = min(ans[id],d[x] + d[y] - 2*d[lca]);
        }
    }
    v[x] = 2;
}
int main(){
    cin>>T;
    while(T--){
        cin>>n>>m;
        for(int i=1;i<=n;i++){
            head[i] = 0;fa[i] = i;v[i] = 0;
            query[i].clear();query_id[i].clear();
        }
        tot = 0;
        for(int i=1;i<n;i++){
            int x,y,z;
            scanf("%d%d%d",&x,&y,&z);
            add(x,y,z);add(y,x,z);
        }
        for(int i=1;i<=m;i++){
            int x,y;
            scanf("%d%d",&x,&y);
            if(x == y)ans[i] = 0;
            else{
                add_query(x,y,i);
                ans[i] = 1 << 30;
            }
        }
        tarjan(1);
        for(int i=1;i<=m;i++)
            printf("%d\n",ans[i]);
    }
    return 0;
}

无向图连通性

求割边

无向边 \((x,y)\) 是桥,当且仅当搜索树上存在 \(x\) 的一个子节点 \(y\) ,满足:

\[dfn[x] < low[y] \]

void tarjan(int x, int in_edge){
 	dfn[x] = low[x] = ++num;
    for(int i=head[x];i;i=nxt[i]){
        int y = ver[i];
        if(!dfn[y]){
            tarjan(y,i);
            low[x] = min(low[x], low[y]);
            if(low[y] > dfn[x])
                bridge[i] = bridge[i ^ 1] = true; //标记为割边
        } else if (i != (in_edge ^ 1)) {
            low[x] = min(low[x], dfn[y]);
        }
    }
}
//main函数中
//加边要保证第一条边编号为2
for(int i=1;i<=n;i++)
	if(!dfn[i])tarjan(i, 0);

割点

\(x\) 不是搜索树的根节点(\(dfs\)) ,则 \(x\) 是割点当且仅当搜索树上存在 \(x\) 的一个子节点\(y\) 满足:$$dfn[x] \le low[y]$$

void tarjan(int x){
    dfn[x] = low[x] = ++num;
    int flag = 0;
    for(int i=head[x];i;i=nxt[i]){
        int y = ver[i];
        if(!dfn[y]){
            tarjan(y);
            low[x] = min(low[x], low[y]);
            if(low[y] >= dfn[x]){
                flag ++;
                if(x != root || flag >= 2) cut[x] = true;
            }
        } else low[x] = min(low[x], dfn[y]);
    }
}
for(int i=1;i<=n;i++)
    if(!dfn[i])tarjan(i);

边双连通分量 (e-DCC)

只需要求出无向图的所有的桥,把桥都删除后,无向图会分成若干个连通块,每个连通块就是一个“边联通分量”。

int c[N], dcc;
void dfs(int x){
    c[x] = dcc;// x所属的连通块编号
    for(int i=head[x];i;i=nxt[i]){
        int y = ver[i];
        if(c[y] || bridge[i])continue; // 不访问桥
        dfs(y);
    }
}
//main函数中
for(int i=1;i<=n;i++)if(!c[i]){
    ++dcc;
    dfs(i);
}

e-DCC 的缩点
把每个\(e-DCC\) 看作一个节点,把桥\((x,y)\) 看作连接编号为\(c[x]\)\(c[y]\)\(e-DCC\) 对应节点的无向边,会产生一棵树(若原来的图不连通,则产生森林)。

int hc[N], vc[N*2], nc[N*2], tc;
void add_c(int x,int y){
    vc[++tc] = y, nc[tc] = hc[x], hc[x] = tc;
}
//main函数中
tc = 1;
for(int i=2;i<=tot;i++){
    int x = ver[i ^ 1], y = ver[i];
    if(c[x] == c[y])continue;
    add_c(c[x],c[y]);
}

点双连通分量(v-DCC) 求法

点双连通分量并不是指“删除割点后图中剩余的连通块”

割点可能属于多个\(v-DCC\)

void tarjan(int x){
    dfn[x] = low[x] = ++num;
    st[++top] = x;
    if(x == root && head[x] == 0){ // 孤立点特判
        dcc[++cnt].push_back(x);
        return ;
    }
    int flag = 0;
    for(int i=head[x];i;i=nxt[i]){
        int y = ver[i];
        if(!dfn[y]){
            tarjan(y);
            low[x] = min(low[x], low[y]);
            if(low[y] >= dfn[x]){ //割点成立条件满足
                flag ++;
                if(x != root || flag > 1)cut[x] = true;
                cnt++;
                int z;
                do{
                    z = st[top--];
                    dcc[cnt].push_back(z);
                }while(z != y);//栈中直到 y 都出栈
                dcc[cnt].push_back(x);
            }
        }else low[x] = min(low[x], dfn[y]);
    }
}

v-DCC 的缩点
设图中共有 \(p\) 个割点和 \(t\)\(v-DCC\)。我们建立一张包含\(p+t\) 个节点的新图,把每个\(v-DCC\) 和每个割点作为新图中的节点,并在每个割点与包含它的所有\(v-DCC\) 之间连边。容易发现,这张新图其实是一颗树(或森林)

//给每个割点一个新的编号(编号从cnt+1开始)
num = cnt;
for(int i=1;i<=n;i++)
    if(cut[i])new_id[i] = ++num;
tc = 1;
for(int i=1;i<=cnt;i++){
    for(int j=0;j<dcc[i].size();j++){
        int x = dcc[i][j];
        if(cut[x]){
            add_c(i,new_id[x]);
            add_c(new_id[x],i);
        }else c[x] = i; // 除割点外,其他点仅属于1个v-DCC
    }
}

有向图连通性

求强连通分量

const int N = 100010, M = 1000010;
int head[N], ver[M], nxt[M], dfn[N], low[N];
int st[N], ins[N], c[N];
vector<int> scc[N];
int n, m, tot, num, top, cnt;
void add(int x, int y){
    ver[++tot] = y, nxt[tot] = head[x], head[x] = cnt;
}
void tarjan(int x){
    dfn[x] = low[x] = ++num;
    st[++top] = x, ins[x] = 1;
    for(int i=head[x];i;i=nxt[i]){
        if(!dfn[ver[i]]){
            tarjan(ver[i]);
            low[x] = min(low[x], low[ver[i]]);
        }else if(ins[ver[i]]) //有作用的横叉边以及返祖边
            low[x] = min(low[x], dfn[ver[i]]);
    }
    if(dfn[x] == low[x]){//x可以作为这个连通分量的入口
        cnt ++;int y;
        do{
            y = st[top--], ins[y] = 0;
            c[y] = cnt, scc[cnt].push_back(y);
        }while(x != y);
    }
}

缩点

for(int x=1;x<=n;x++){
    for(int i=head[x];i;i=nxt[i]){
        int y = ver[i];
        if(c[x] == c[y])continue;
        add_c(c[x],c[y]);
    }
}

欧拉路

void enlur(){
 	st[++top] = 1;
    while(top > 0){
        int x = st[top] , i = head[x];
        while(i && vis[i]) i = nxt[i];
        if(i){
            st[++top] = ver[i];
            vis[i] = vis[i ^ 1] = 1;
            head[x] = nxt[i]; // 会修改head[x] 的值
        }else{
            top --;
            ans[++t] = x;
        }
    }
}

二分图

1. 二分图判定

染色法

int n;
int head[N],edge[M],nxt[M],tot;
int color[N];
bool dfs(int u,int fa,int c){
    co[u] = c;
    for(int i=head[u];i;i=nxt[i]){
        int j = edge[i];
        if(co[j] == -1)
            if(!dfs(j,u,!c))return false;
        else if(co[j] == c)return false;
    }
    return true;
}
bool check(){
    memset(co,-1,sizeof co);
    bool flag = true;
    for(int i=1;i<=n;i++){
        if(co[i] == -1){
            if(!dfs(i,-1,0)){
                flag = false;
                break;
            }
        }
    }
    return flag;
}

2. 二分图最大匹配

匈牙利算法 复杂度 \(O(NM)\)

bool dfs(int x){
    for(int i=head[x];i;i=nxt[i]){
        int y = ver[i];
        if(!vis[y]){
            vis[y] = 1;
            if(!match[y] || dfs(match[y])){
                match[y] = x; return true;
            }
        }
    }
    return false;
}
for(int i=1;i<=n;i++){
    memset(vis, 0, sizeof vis);
    if(dfs(i)) res++;
}

3. 二分图带权最大匹配

KM \(O(n^3)\)

2019南京 J spy

ll n, a[N],b[N],c[N],p[N];
ll w[N][N];
ll lx[N] , ly[N];
ll match[N];
ll slack[N];
bool vy[N];
ll pre[N];
void bfs( ll k ){
    ll x , y = 0 , yy = 0 , delta;
    memset( pre , 0 , sizeof(pre) );
    for( ll i = 1 ; i <= n ; i++ ) slack[i] = inf;
    match[y] = k;
    while(1){
        x = match[y]; delta = inf; vy[y] = true;
        for( ll i = 1 ; i <= n ;i++ ){
            if( !vy[i] ){
                if( slack[i] > lx[x] + ly[i] - w[x][i] ){
                    slack[i] = lx[x] + ly[i] - w[x][i];
                    pre[i] = y;
                }
                if( slack[i] < delta ) delta = slack[i] , yy = i ;
            }
        }
        for( ll i = 0 ; i <= n ; i++ ){
            if( vy[i] ) lx[match[i]] -= delta , ly[i] += delta;
            else slack[i] -= delta;
        }
        y = yy ;
        if( match[y] == -1 ) break;
    }
    while( y ) match[y] = match[pre[y]] , y = pre[y];
}
 
ll KM(){
    memset( lx , 0 ,sizeof(lx) );
    memset( ly , 0 ,sizeof(ly) );
    memset( match , -1, sizeof(match) );
    for( ll i = 1 ; i <= n ; i++ ){
        memset( vy , false , sizeof(vy) );
        bfs(i);
    }
    ll res = 0 ;
    for( ll i = 1 ; i <= n ; i++ ){
        if( match[i] != -1 ){
            res += w[match[i]][i] ;
        }
    }
    return res;
}
 
int main()
{
    scanf("%lld",&n);
    for(ll i=1;i<=n;i++) scanf("%lld",&a[i]);
    for(ll i=1;i<=n;i++) scanf("%lld",&p[i]);
    for(ll i=1;i<=n;i++) scanf("%lld",&b[i]);
    for(ll i=1;i<=n;i++) scanf("%lld",&c[i]);
    for(ll i=1;i<=n;i++){
        for(ll j=1;j<=n;j++){
            ll s=0;
            for(ll k=1;k<=n;k++){
                if(b[i]+c[j]>a[k]) s+=p[k];
            }
            w[i][j]=s;
        }
    }
    printf("%lld\n",KM());
    return 0;
}

虚树

P2495

#include <cstdio>
#include <iostream>
#include <cmath>
#include <string>
#include <cstring>
#include <algorithm>
#include <vector>
#include <queue>
using namespace std;
typedef long long ll;
const int inf = 0x3f3f3f3f;
const int N = 250000 + 5;
const int M = 2*N;
int n, q, k, a[N], mark[N];
int head[N], ver[M], edge[M], nxt[M], tot;
int dfn[N], cid[N], cnt;
int dep[N], f[N][20], minval[N][20];
int st[N], top;
ll d[N];
struct Graph{
    int head[N], ver[M], edge[M], nxt[M], tot;
    void add(int x, int y, int z){
        ver[++tot] = y, edge[tot] = z, nxt[tot] = head[x], head[x] = tot;
    }
}G;
void add(int x, int y, int z){
    ver[++tot] = y, nxt[tot] = head[x], edge[tot] = z, head[x] = tot;
}
void dfs(int x,int fa){
    dfn[x] = ++cnt, cid[cnt] = x;
    for(int i=head[x];i;i=nxt[i]){
        int y = ver[i];
        if(y == fa)continue;
        f[y][0] = x;
        dep[y] = dep[x] + 1;
        minval[y][0] = edge[i];
        dfs(y, x);
    }
}
int MinVal;
int lca(int x, int y){
    MinVal = inf;
    if(dep[x] > dep[y]) swap(x, y);
    for(int i=19;i>=0;i--){
        if(dep[f[y][i]] >= dep[x]){
            MinVal = min(MinVal, minval[y][i]);
            y = f[y][i];
        }
    }
    if(x == y)return x;
    for(int i=19;i>=0;i--){
        if(f[y][i] != f[x][i]){
            MinVal = min(MinVal, min(minval[x][i], minval[y][i]));
            y = f[y][i], x = f[x][i];
        }
    }
    return f[x][0];
}
void insert(int x){
    if(x == 1) return;
    int t = lca(x, st[top]);
    if(t != st[top]){
        while(top > 1 && dfn[st[top-1]] > dfn[t]){
            lca(st[top-1], st[top]);
            G.add(st[top-1], st[top], MinVal);
            top --;
        }
        if(dfn[t] > dfn[st[top-1]]){ // t 不在栈中
            G.head[t] = 0; lca(t, st[top]);
            G.add(t, st[top], MinVal); st[top] = t;
        } else { // 说明 t 已经在栈中
            lca(t,st[top]); 
            G.add(t, st[top--], MinVal);
        }
    }
    G.head[x] = 0, st[++top] = x;
}
bool cmp(int x, int y){return dfn[x] < dfn[y];}
void build(){
    sort(a + 1, a + 1 + k, [=](const int a, const int b)->bool{return dfn[a] < dfn[b];});
    st[top=1] = 1; G.tot = 0, G.head[1] = 0;
    for(int i=1,l;i<=k;i++) insert(a[i]);
    for(int i=1;i<top;i++){
        lca(st[i], st[i+1]); G.add(st[i], st[i+1], MinVal);
    } 
}
void dfs(int x){
    d[x] = 0;
    for(int i=G.head[x];i;i=G.nxt[i]){
        int y = G.ver[i];
        //cout << x << ' ' << y << ' ' << G.edge[i] << endl;
        dfs(y);
        if(mark[y]) d[x] += G.edge[i];
        else d[x] += min(1ll*G.edge[i], d[y]);
    }
}

int main() {
    memset(minval, 0x3f, sizeof minval);
    scanf("%d",&n);
    for(int i=1,x,y,z;i<n;i++){
        scanf("%d%d%d",&x,&y,&z);
        add(x,y,z);
        add(y,x,z);
    }
    dep[1] = 1;
    dfs(1, 0);
    for(int j=1;j<20;j++)
        for(int i=1;i<=n;i++) 
            f[i][j] = f[f[i][j-1]][j-1], minval[i][j] = min(minval[i][j-1], minval[f[i][j-1]][j-1]);
    scanf("%d",&q);
    while(q--){
        scanf("%d",&k);
        for(int i=1;i<=k;i++)scanf("%d",&a[i]), mark[a[i]] = 1;
        build();
        dfs(1);
        printf("%lld\n", d[1]);
        for(int i=1;i<=k;i++) mark[a[i]] = 0;
    }
    return 0;
}

网络流

一定要注意边序号初始为1

最大流

1. \(EK\)

\(O(nm^2)\) 一般可以处理\(10^3\sim 10^4\) 规模的网络

const int inf = 1 << 29, N = 2010, M = 20010;
int head[N],ver[M],edge[M],nxt[M],v[N],incf[N],pre[N];
int n,m,s,t,tot,maxflow;
void add(int x, int y, int z){
    ver[++tot] = y, edge[tot] = z, nxt[tot] = head[x], head[x] = tot;
    ver[++tot] = x, edge[tot] = 0, nxt[tot] = head[y], head[y] = tot;
}
bool bfs(){
    memset(v,0,sizeof v);
    queue<int> q;
    q.push(s); v[s] = 1;
    incf[s] = inf;
    while(q.size()){
        int x = q.front(); q.pop();
        for(int i=head[x];i;i=nxt[i]){
            if(edge[i]){
                int y = ver[i];
                if(v[y])continue;
                incf[y] = min(incf[x], edge[i]);
                pre[y] = i;
                q.push(y), v[y] = 1;
                if(y == t) return 1;
            }
        }
    }
    return 0;
}
void update(){
    int x = t;
    while(x != s){
        int i = pre[x];
        edge[i] -= incf[t];
        edge[i ^ 1] += incf[t];
        x = ver[i ^ 1];
    }
    maxflow += incf[t];
}
int main(){
    while(cin >> n >> m){
        memset(head,0,sizeof head);
        s = 1, t = n, tot = 1, maxflow = 0;
        for(int i=1;i<=m;i++){
            int x,y,z;scanf("%d%d%d",&x,&y,&z);
            add(x,y,z);add(y,x,z);
        }
        while(bfs()) update();
        cout << maxflow << endl;
    }
}
2. Dinic

\(O(n^2m)\) 该算法求解二分图最大匹配的时间复杂度为\(O(m\sqrt{n})\)

const int inf = 1<<29, N = 50010,M=30010;
int head[N], ver[M], edge[M], nxt[M], d[N];
int n, m, s, t, tot, maxflow;
queue<int> q;
void add(int x, int y, int z){
    ver[++tot] = y, edge[tot] = z, nxt[tot] = head[x], head[x] = tot;
    ver[++tot] = x, edge[tot] = 0, nxt[tot] = head[y], head[y] = tot;
}
bool bfs(){
    memset(d, 0, sizeof d);
    while(q.size())q.pop();
    q.push(s);d[s] = 1;
    while(q.size()){
        int x = q.front();q.pop();
        for(int i=head[x];i;i=nxt[i]){
            if(edge[i] && !d[ver[i]]){
                q.push(ver[i]);
                d[ver[i]] = d[x] + 1;
                if(ver[i] == t) return 1;
            }
        }
    }
    return 0;
}
int dinic(int x, int flow){
    if(x == t) return flow;
    int rest = flow, k;
    for(int i=head[x];i && rest; i=nxt[i]){
       	if(edge[i] && d[ver[i]] == d[x] + 1){
            k = dinic(ver[i], min(rest, edge[i]));
            if(!k) d[ver[i]] = 0;
            edge[i] -= k;
            edge[i ^ 1] += k;
            rest -= k;
        }
    }
    return flow - rest;
}
int main(){
    cin >> n >> m;
    cin >> s >> t;
    tot = 1;
    for(int i=1;i<=m;i++){
        int x, y, c;scanf("%d%d%d",&x,&y,&c);
        add(x,y,c);
    }
    int flow = 0;
    while(bfs())
        while(flow = dinic(s,inf)) maxflow += flow;
    cout << maxflow << endl;
}

费用流

const int N = 5000 + 5;
const int M = 100010;
int head[N], ver[M], nxt[M], cost[M], edge[M];
int d[N], v[N], pre[N], incf[N];
int n, m, s, t, tot;
int maxflow, ans;
void add(int x, int y, int z, int c){
    ver[++tot] = y, nxt[tot] = head[x], edge[tot] = z, cost[tot] = c, head[x] = tot;
    ver[++tot] = x, nxt[tot] = head[y], edge[tot] = 0, cost[tot] = -c, head[y] = tot;
}
bool spfa(){
    memset(d, 0x3f, sizeof d);
    memset(v, 0, sizeof v);
    d[s] = 0; v[s] = 1;
    incf[s] = inf;
    queue<int> q;
    q.push(s);
    while(q.size()){
        int x = q.front();q.pop();
        v[x] = 0;//注意这里
        for(int i=head[x];i;i=nxt[i])if(edge[i]){
            int y = ver[i];
            if(d[y] > d[x] + cost[i]){
                d[y] = d[x] + cost[i];
                incf[y] = min(incf[x], edge[i]);
                pre[y] = i;
                if(!v[y]) v[y] = 1, q.push(y);
            }
        }
    }
    return d[t] != inf;
}
void update(){
    int x = t;
    while(x != s){
        int i = pre[x];
        edge[i] -= incf[t];
        edge[i^1] += incf[t];
        x = ver[i^1];
    }
    maxflow += incf[t];
    ans += incf[t] * d[t];
}
int main(){
    tot = 1;//注意这里
    scanf("%d%d%d%d", &n, &m, &s, &t);
    for(int i=1;i<=m;i++){
        int x, y, z, c;scanf("%d%d%d%d", &x, &y, &z, &c);
        add(x, y, z, c);
    }
    while(spfa()) update();
    printf("%d %d\n", maxflow, ans);

    return 0;
}

灭绝树

DAG

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
#define pb push_back
const int N = 200010;
//E:原图,G反图,T支配树
//dep:T中的深度,deg:反向图中的入度
vector<int> E[N],G[N],T[N];
int n,m,deg[N],rt,a[N],dep[N],val[N];
int f[N][20],tot;
void BFS(){
    queue<int> q;
    rt = n+1;//超级源点.....nmb
    for(int i=1;i<=n;i++)if(!deg[i]){q.push(i);E[rt].pb(i);G[i].pb(rt);}
    int tot = 0;
    while(!q.empty()){
        int u = q.front();q.pop();
        a[++tot] = u;
        for(int v : E[u])if((--deg[v]) == 0)q.push(v);
    }
}
int LCA(int x,int y){
    if(dep[x] > dep[y])swap(x,y);
    for(int i=19;i>=0;i--)if(dep[y] > dep[x] && dep[f[y][i]] >= dep[x])y = f[y][i];
    if(x == y)return x;
    for(int i=19;i>=0;i--)if(f[x][i] != f[y][i]) x = f[x][i],y=f[y][i];
    return f[x][0];
}
int main(){
    int tt;scanf("%d",&tt);
    while(tt--){
        scanf("%d%d",&n,&m);
        for(int i=1;i<=n+1;i++){
            E[i].clear();G[i].clear();T[i].clear();
            dep[i] = deg[i] = 0;
        }
        for(int i=1,u,v;i<=m;i++){
            scanf("%d%d",&u,&v);
            E[v].pb(u);G[u].pb(v);deg[u] ++;
        }
        BFS();
        dep[rt] = 1;
        for(int i=1;i<=n;i++){
            int u = a[i],fa = -1;
            for(int v:G[u])fa = (fa == -1 ?v:LCA(fa,v));
            dep[u] = dep[fa]+1;
            f[u][0] = fa;T[fa].pb(u);
            for(int i=1;i<=19;i++)f[u][i] = f[f[u][i-1]][i-1];
        }
        int q;scanf("%d",&q);
        while(q--){
            int u,v;scanf("%d%d",&u,&v);
            int lca = LCA(u,v);
            printf("%d\n",dep[u] + dep[v] - dep[lca] - 1);
        }
    }
}

有向图+DAG

#include <bits/stdc++.h>
using namespace std;
const int N = 3e5+10;
struct Map{
    int head[N],ver[N<<1],nxt[N<<1],cnt;
    void reset(){cnt = 0;memset(head,0,sizeof head);}
    void link(int x,int y){ver[++cnt]=y;nxt[cnt]=head[x];head[x]=cnt;}
}E,G,T,TR,D;
int deg[N],dep[N],dfn[N],id[N],fa[N],f[N][20],semi[N],mm[N],tot,anc[N],ans[N],top[N],cnt,n,m;
void dfs(int x){
    dfn[x] = ++tot;id[tot] = x;
    for(int i=E.head[x];i;i=E.nxt[i]){
        int y = E.ver[i];
        if(dfn[y])continue;
        dfs(y);T.link(x,y);
        //2
        anc[y] = x;
    }
}
int find(int x){
    if(x == fa[x])return x;
    int ff = fa[x];fa[x] = find(fa[x]);
    if(dfn[semi[mm[ff]]] < dfn[semi[mm[x]]])mm[x] = mm[ff];
    return fa[x];
}
int LCA(int x,int y){
    if(dep[x] > dep[y])swap(x,y);
    for(int i=18;i>=0;i--)if(dep[x] < dep[y] && dep[f[y][i]] >= dep[x])y=f[y][i];
    if(x == y)return x;
    for(int i=18;i>=0;i--)if(f[x][i] != f[y][i])x=f[x][i],y=f[y][i];
    return f[x][0];
}
int getAns(int x){
    ans[x] = 1;
    for(int i=D.head[x];i;i=D.nxt[i]){
        int y = D.ver[i];
        getAns(y),ans[x] += ans[y];
    }
}
int main(){
    scanf("%d%d",&n,&m);
    for(int i=1;i<=n;i++){
        semi[i] = mm[i] = fa[i] = i;
    }
    for(int i=1,u,v;i<=m;i++){
        scanf("%d%d",&u,&v);
        E.link(u,v);G.link(v,u);
    }
    dfs(1);anc[1] = 0;
    for(int i=n;i>=2;i--){
        int x = id[i],res = n;
        if(!x)continue;
        for(int i=G.head[x];i;i=G.nxt[i]){
            int y = G.ver[i];
            if(!dfn[y])continue;
            if(dfn[y] < dfn[x])res = min(res,dfn[y]);
            else{
                //1.
                find(y);res = min(res,dfn[semi[mm[y]]]);
            }
        }
        semi[x] = id[res];fa[x] = anc[x];
        T.link(semi[x],x);
    }
    for(int x=1;x<=n;x++)
        for(int i=T.head[x];i;i=T.nxt[i]){
            int y = T.ver[i];
            TR.link(y,x);deg[y]++;
        }
    queue<int> q;
    for(int i=1;i<=n;i++)if(deg[i]==0)q.push(i);
    while(!q.empty()){
        int x = q.front();q.pop();
        top[++cnt] = x;
        for(int i=T.head[x];i;i=T.nxt[i]){
            int y = T.ver[i];
            if((--deg[y]) == 0)q.push(y);
        }
    }
    for(int i=1;i<=cnt;i++){
        int x = top[i],bb = -1;
        for(int j=TR.head[x];j;j=TR.nxt[j]){
            int y = TR.ver[j];
            bb = bb==-1?y:LCA(y,bb);
        }
        f[x][0] = bb;D.link(bb,x);dep[x] = dep[bb]+1;
        for(int j=1;j<=18;j++)f[x][j] = f[f[x][j-1]][j-1];
    }
    getAns(1);
    for(int i=1;i<=n;i++)printf("%d ",ans[i]);
    return 0;
}

有向图

#include <bits/stdc++.h>
using namespace std;
const int N = 3e5+10;
struct Map{
    int head[N],ver[N<<1],nxt[N<<1],cnt;
    void reset(){cnt = 0;memset(head,0,sizeof head);}
    void link(int x,int y){ver[++cnt]=y;nxt[cnt]=head[x];head[x]=cnt;}
}E,G,T,D;
//E原图,G反图,T为DAG
int dfn[N],id[N],fa[N],f[N][20],semi[N],mm[N],tot,anc[N],ans[N],top[N],cnt,n,m,idom[N];
void dfs(int x){
    dfn[x] = ++tot;id[tot] = x;
    for(int i=E.head[x];i;i=E.nxt[i]){
        int y = E.ver[i];
        if(dfn[y])continue;
        dfs(y);
        anc[y] = x;
    }
}
int find(int x){
    if(x == fa[x])return x;
    int ff = fa[x];fa[x] = find(fa[x]);
    if(dfn[semi[mm[ff]]] < dfn[semi[mm[x]]])mm[x] = mm[ff];
    return fa[x];
}
int getAns(int x){
    ans[x] = 1;
    for(int i=D.head[x];i;i=D.nxt[i]){
        int y = D.ver[i];
        getAns(y),ans[x] += ans[y];
    }
}
int main(){
    scanf("%d%d",&n,&m);
    for(int i=1;i<=n;i++){
        semi[i] = mm[i] = fa[i] = i;
    }
    for(int i=1,u,v;i<=m;i++){
        scanf("%d%d",&u,&v);
        E.link(u,v);G.link(v,u);
    }
    dfs(1);anc[1] = 0;
    for(int i=n;i>=2;i--){//dfs序倒着来
        int x = id[i],res = n;
        if(!x)continue;
        for(int i=G.head[x];i;i=G.nxt[i]){
            int y = G.ver[i];
            if(!dfn[y])continue;
            if(dfn[y] < dfn[x])res = min(res,dfn[y]);
            else{
                find(y);
                res = min(res,dfn[semi[mm[y]]]);
            }
        }
        semi[x] = id[res];fa[x] = anc[x];
        T.link(semi[x],x);
        x = anc[x];
        for(int j=T.head[x];j;j=T.nxt[j]){
            int y = T.ver[j];
            find(y);
            if(semi[mm[y]] == x)idom[y] = x;
            else idom[y] = mm[y];
        }
    }
    for(int i=2,now;i<=tot;i++){
        now = id[i];
        if(idom[now] != semi[now])idom[now] = idom[idom[now]];
    }
    for(int i=2;i<=n;i++)if(idom[i])D.link(idom[i],i);
    getAns(1);
    for(int i=1;i<=n;i++)printf("%d ",ans[i]);
    return 0;
}

五. 技巧

调试

#define dbg(x...) do { cout << "\033[32;1m" << #x <<" -> "; err(x); } while (0)
void err() { cout << "\033[39;0m" << endl; }
template<class T, class... Ts> void err(const T& arg,const Ts&... args) { cout << arg << " "; err(args...); }

快读

inline int read(){
    int x = 0,  f = 1;
    char ch = getchar();
    while(ch < '0' || ch > '9'){if(ch == '-')f = -1; ch = getchar();}
    while(ch >= '0' && ch <= '9'){x = (x<<1) + (x<<3) + (ch^48);ch=getchar();}
    return x * f;
}

快写

void put(int x){
    int num = 0; char c[15];
    while(x) c[++num] = (x % 10) + 48, x /= 10;
    while(num) putchar(c[num--]);
    putchar('\n');
}

枚举子集

S是一个二进制数,表示一个集合,可以用S0=S(初始),S0=(S0-1)&S(下一个)这种方法枚举遍S的所有子集。
注意到这种枚举方法是二进制数值上从大到小枚举子集的。用归纳法证明合理性,假设枚举到某个S0,大于它的所有S子集都枚举过了,下一个枚举S1=(S0-1)&S,需要证明S1是S0紧挨着的下一个子集,才能保证枚举不漏,也就是要证明区间(S1,S0)里不存在S的其他子集。
设S0以k(k=0,1,2…)个0结尾,S0=xxxx10...0,则S0-1=xxxx01...1,S1=(S0-1)&S,易见S1是以xxxx0开头的最大子集,而S0是以xxxx1开头的最小子集,如果存在某子集\(S1<Sx<S0\),Sx要么以xxxx0开头,要么以xxxx1开头,无论哪种情况,都会出现矛盾。

复杂度\(O(3^n)\)

\(3^15=14348907,3^14=4782969\)

for (int S=1; S<(1<<n); ++S){
    for (int S0=S; S0; S0=(S0-1)&S)
        //do something.

如果不包含自身

for (int S=1; S<(1<<n); ++S){
    for (int S0=(S-1)&S; S0; S0=(S0-1)&S)
        //do something.
}

大数

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
struct BigInteger{
    //BASE为vector数组中一位中最大存储的数字,前面都是以10计算的
    //WIDTH为宽度
    static const int BASE = 100000000;
    static const int WIDTH = 8;
    vector<int> s;
    //正数为1,负数为-1
    int flag = 1;
    
    //构造函数
    BigInteger(ll num = 0){*this = num;}
    BigInteger(string str){*this = str;}
    BigInteger(const BigInteger& t){
        this->flag = t.flag;
        this->s = t.s;
    }
    //赋值函数
    BigInteger operator = (ll num){
        s.clear();
        do {
            s.push_back(num % BASE);
            num /= BASE;
        }while(num > 0);
        return *this;
    }
    BigInteger operator = (string &str){
        s.clear();
        int x,len = (str.length()-1)/WIDTH + 1;
        for(int i=0;i<len;i++){
            int end = str.length() - i*WIDTH;
            int start = max(0,end - WIDTH);
            sscanf(str.substr(start,end-start).c_str(),"%d",&x);
            s.push_back(x);
        }
        return *this;
    }

    //基本比较函数 A < B
    bool cmp( vector<int> &A, vector<int> & B){
        if(A.size() != B.size())return A.size() < B.size();
        for(int i=A.size()-1;i>=0;i--){
            if(A[i] != B[i]){
                return A[i] < B[i];
            }
        }
        return false;
    }
    //比较函数如果小于则返回真
    bool operator < ( BigInteger & b){
        return cmp(s,b.s);
    }
    bool operator > ( BigInteger& b){
        return b < *this;
    }
    bool operator <= ( BigInteger &b){
        return !(b < *this);
    }
    bool operator >= ( BigInteger &b){
        return !(*this < b);
    }
    bool operator == ( BigInteger &b){
        return !(b < *this) && (*this < b);
    }
    //基本四则运算
    vector<int> add(vector<int> &A, vector<int> &B);
    vector<int> sub(vector<int> &A, vector<int> &B);
    vector<int> mul(vector<int> &A, int b);
    vector<int> mul(vector<int> &A, vector<int> &B);
    vector<int> div(vector<int> &A, int b);
    vector<int> div(vector<int> A, vector<int> B);

    //重载运算符
    BigInteger operator + (BigInteger &b);
    BigInteger operator - (BigInteger &b);
    BigInteger operator * (BigInteger &b);
    BigInteger operator * (int& b);
    BigInteger operator / (BigInteger & b);
    BigInteger operator / (int b);
};
//重载<<
ostream& operator << (ostream &out,const BigInteger& x) {
    if(x.flag == -1)out << '-';
    out << x.s.back();
    for(int i = x.s.size() - 2; i >= 0;i--){
        char buf[20];
        sprintf(buf,"%08d",x.s[i]);//08d此处的8应该与WIDTH一致
        for(int j=0;j<strlen(buf);j++)out<<buf[j];
    }
    return out;
}
//重载输入
istream& operator >> (istream & in,BigInteger & x){
    string s;
    if(!(in>>s))return in;
    x = s;
    return in;
}
vector<int> BigInteger::add( vector<int> &A, vector<int> &B){
    if(A.size() < B.size())return add(B,A);
    int t = 0;
    vector<int> C;
    for(int i=0;i<A.size();i++){
        if(i<B.size())t += B[i];
        t += A[i];
        C.push_back(t%BASE);
        t /= BASE;
    }
    if(t)C.push_back(t);
    while(C.size() > 1 && C.back() == 0)C.pop_back();
    return C;
}
vector<int> BigInteger::sub( vector<int> &A, vector<int> &B){
    vector<int> C;
    for(int i=0,t=0;i<A.size();i++){
        t = A[i] - t;
        if(i<B.size())t -= B[i];
        C.push_back((t+BASE)%BASE);
        if(t < 0)t = 1;
        else t = 0;
    }
    while(C.size() > 1 && C.back() == 0)C.pop_back();
    return C;
}
vector<int> BigInteger::mul(vector<int> &A,int b){
    vector<int> C;
    int t = 0;
    for(int i = 0;i < A.size() || t; i++){
        if(i < A.size()) t += A[i] * b;
        C.push_back(t%BASE);
        t /= BASE;
    }
    return C;
}
//大数乘大数乘法需要将BASE设置为10,WIDTH设置为1
vector<int> BigInteger::mul( vector<int> &A, vector<int> &B) {
    int la = A.size(),lb = B.size();
    vector<int> C(la+lb+10,0);
    for(int i=0;i<la;i++){
        for(int j=0;j<lb;j++){
            C[i+j] += A[i] * B[j];
        }
    }
    for(int i=0;i<C.size();i++){
        if(C[i] >= BASE){
            C[i + 1] += C[i] / BASE;
            C[i] %= BASE;
        }
    }
    while(C.size() > 1 && C.back() == 0)C.pop_back();
    return C;
}
//大数除以整数
vector<int> BigInteger::div(vector<int> & A,int b){
    vector<int> C;
    int r = 0;
    for(int i = A.size() - 1;i >= 0;i--){
        r = r * 10 + A[i];
        C.push_back(r/b);
        r %= b;
    }
    reverse(C.begin(),C.end());
    while(C.size() > 1 && C.back() == 0)C.pop_back();
    return C;
}
//大数除以大数
vector<int> BigInteger::div(vector<int> A,vector<int> B){
    int la = A.size(),lb = B.size();
    int dv = la - lb; // 相差位数
    vector<int> C(dv+1,0);
    //将除数扩大,使得除数和被除数位数相等
    reverse(B.begin(),B.end());
    for(int i=0;i<dv;i++)B.push_back(0);
    reverse(B.begin(),B.end());
    lb = la;
    for(int j=0;j<=dv;j++){
        while(!cmp(A,B)){
            A = sub(A,B);
            C[dv-j]++;
        }
        B.erase(B.begin());
    }
    while(C.size()>1 && C.back() == 0)C.pop_back();
    return C;
}
BigInteger BigInteger::operator + ( BigInteger & b){
    BigInteger c;
    c.s.clear();
    c.s = add(s,b.s);
    return c;
}

BigInteger BigInteger::operator - ( BigInteger & b) {
    BigInteger c;
    c.s.clear();
    if(*this < b){
        c.flag = -1;
        c.s = sub(b.s,s);
    }
    else{
        c.flag = 1;
        c.s = sub(s,b.s);
    }
    return  c;
}
BigInteger BigInteger::operator *(BigInteger & b){
    BigInteger c;
    c.s = mul(s,b.s);
    return c;
}
BigInteger BigInteger::operator *(int& b){
    BigInteger c;
    c.s = mul(s,b);
    return c;
}
BigInteger BigInteger::operator /(BigInteger & b){
    BigInteger c;
    if(*this < b){
        c.s.push_back(0);
    }
    else{
        c.flag = 1;
        c.s = div(s,b.s);
    }
    return c;
}
BigInteger BigInteger::operator /(int b){
    BigInteger c;
    BigInteger t = b;
    if(*this < t){
        c.s.push_back(0);
    }
    else{
        c.flag = 1;
        c.s = div(s,b);
    }
    return c;
}
int main(){
    BigInteger A,B;
    cin>>A>>B;
    cout<<A+B<<endl;
    cout<<A-B<<endl;
    cout<<A*B<<endl;
    cout<<A/B<<endl;
    return 0;
}

提交前必看!

  1. 有没有爆int,有没有爆longlong?
  2. 有没有把int数组错开成char数组?
  3. 有没有把调试信息删除干净?
posted @ 2020-03-31 19:16  kpole  阅读(721)  评论(0编辑  收藏  举报