「SCOI2005」互不侵犯 (状压DP)
题目链接
在\(N\times N\) 的棋盘里面放 \(K\)个国王,使他们互不攻击,共有多少种摆放方案。国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共\(8\) 个格子。
\(1\le N\le 9,0\le K\le N*N\)
\(f(i,j,l)\)来表示前 \(i\) 行,当前状态为\(j\) ,且已经放置 \(l\)个国王时的方案。
\(j\) 这一维用二进制来表示
先预处理在一行上的所有合法状态(即排除同一行上两个相邻的情况),然后直接枚举这些来匹配上一行的状态即可。
\(f(i,j,l) = \sum f(i-1,x,l-num(x))\)
\(num(x)\) 为x在二进制下有多少个1
转移时要排除两行间国王互相攻击不合法的情况。
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
vector<int> sta,stan;
ll d[10][(1<<10)][100];
int n,k;
bool ok(int i,int j){
if(i & j)return false;
if((i << 1) & j)return false;
if(i & (j << 1))return false;
return true;
}
int main(){
scanf("%d%d",&n,&k);
for(int i=0;i<(1<<n);i++){
int num = 0;
bool flag = true;
for(int j=0;j<n-1;j++){
if(i >> j & 1){
num++;
if(i >> (j+1) & 1){
flag = false;
break;
}
}
}
if(!flag)continue;
sta.push_back(i);
stan.push_back(num + (i >> (n-1) & 1));
}
for(int i=0;i<sta.size();i++){
d[1][i][stan[i]] = 1;
}
for(int i=2;i<=n;i++){
for(int j=0;j<sta.size();j++){
for(int t=0;t<sta.size();t++){
if(ok(sta[j],sta[t])){
for(int p = stan[j];p <= k;p++){
d[i][j][p] += d[i-1][t][p-stan[j]];
}
}
}
}
}
ll res = 0;
for(int i=0;i<sta.size();i++)
res += d[n][i][k];
cout<<res<<endl;
return 0;
}
注:转载请注明出处