Python网络爬虫第一弹《Python网络爬虫相关基础概念》
引入
之前在授课过程中,好多同学都问过我这样的一个问题:为什么要学习爬虫,学习爬虫能够为我们以后的发展带来那些好处?其实学习爬虫的原因和为我们以后发展带来的好处都是显而易见的,无论是从实际的应用还是从就业上。
我们都知道,当前我们所处的时代是大数据的时代,在大数据时代,要进行数据分析,首先要有数据源,而学习爬虫,可以让我们获取更多的数据源,并且这些数据源可以按我们的目的进行采集。
优酷推出的火星情报局就是基于网络爬虫和数据分析制作完成的。其中每期的节目话题都是从相关热门的互动平台中进行相关数据的爬取,然后对爬取到的数据进行数据分析而得来的。另一方面,优酷根据用户实时观看视频时的前进,后退等行为数据,能够推测计算出观众的兴趣点和爱好点,这样有助于节目的剪辑和后期的节目方案的编写。
今日头条作为一个新闻推荐类的应用,其内部的新闻数据都是通过爬虫程序在各个新闻网站进行新闻数据的爬取,然后通过相应的处理和运算将用户感兴趣的新闻话题推送到用户的手机上。
从就业的角度来说,爬虫工程师目前来说属于紧缺人才,并且薪资待遇普遍较高所以,深层次地掌握这门技术,对于就业来说,是非常有利的。有些人学习爬虫可能为了就业或者跳槽。从这个角度来说,爬虫工程师是不错的选择之一。随着大数据时代的来临,爬虫技术的应用将越来越广泛,在未来会拥有更好的发展空间。
-
什么是爬虫
爬虫就是通过编写程序模拟浏览器上网,然后让其去互联网上抓取数据的过程。 -
哪些语言可以实现爬虫
1.php:可以实现爬虫。php被号称是全世界最优美的语言(当然是其自己号称的,就是王婆卖瓜的意思),但是php在实现爬虫中支持多线程和多进程方面做的不好。
2.java:可以实现爬虫。java可以非常好的处理和实现爬虫,是唯一可以与python并驾齐驱且是python的头号劲敌。但是java实现爬虫代码较为臃肿,重构成本较大。
3.c、c++:可以实现爬虫。但是使用这种方式实现爬虫纯粹是是某些人(大佬们)能力的体现,却不是明智和合理的选择。
4.python:可以实现爬虫。python实现和处理爬虫语法简单,代码优美,支持的模块繁多,学习成本低,具有非常强大的框架(scrapy等)且一句难以言表的好!没有但是!
-
爬虫的分类
1.通用爬虫:通用爬虫是搜索引擎(Baidu、Google、Yahoo等)“抓取系统”的重要组成部分。主要目的是将互联网上的网页下载到本地,形成一个互联网内容的镜像备份。 简单来讲就是尽可能的;把互联网上的所有的网页下载下来,放到本地服务器里形成备分,在对这些网页做相关处理(提取关键字、去掉广告),最后提供一个用户检索接口。- 搜索引擎如何抓取互联网上的网站数据?
- 门户网站主动向搜索引擎公司提供其网站的url
- 搜索引擎公司与DNS服务商合作,获取网站的url
- 门户网站主动挂靠在一些知名网站的友情链接中
- 搜索引擎如何抓取互联网上的网站数据?
2.聚焦爬虫:聚焦爬虫是根据指定的需求抓取网络上指定的数据。例如:获取豆瓣上电影的名称和影评,而不是获取整张页面中所有的数据值。
-
robots.txt协议
- 如果自己的门户网站中的指定页面中的数据不想让爬虫程序爬取到的话,那么则可以通过编写一个robots.txt的协议文件来约束爬虫程序的数据爬取。robots协议的编写格式可以观察淘宝网的robots(访问www.taobao.com/robots.txt即可)。但是需要注意的是,该协议只是相当于口头的协议,并没有使用相关技术进行强制管制,所以该协议是防君子不防小人。但是我们在学习爬虫阶段编写的爬虫程序可以先忽略robots协议。 -
反爬虫
- 门户网站通过相应的策略和技术手段,防止爬虫程序进行网站数据的爬取。 -
反反爬虫
- 爬虫程序通过相应的策略和技术手段,破解门户网站的反爬虫手段,从而爬取到相应的数据。
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】凌霞软件回馈社区,博客园 & 1Panel & Halo 联合会员上线
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 深入理解 Mybatis 分库分表执行原理
· 如何打造一个高并发系统?
· .NET Core GC压缩(compact_phase)底层原理浅谈
· 现代计算机视觉入门之:什么是图片特征编码
· .NET 9 new features-C#13新的锁类型和语义
· Spring AI + Ollama 实现 deepseek-r1 的API服务和调用
· 《HelloGitHub》第 106 期
· 数据库服务器 SQL Server 版本升级公告
· 深入理解Mybatis分库分表执行原理
· 使用 Dify + LLM 构建精确任务处理应用