递推与记忆化搜索

 内容参考书籍《算法竞赛入门到进阶》

先看一道经典题:poj1163 http://poj.org/problem?id=1163

 如果此题按照从上往下的方法计算,每走一步下一步就有2种选择,其复杂度为2n

那么我们从下往上算,下面给出dfs代码:

从1,1开始往下走,一直到最后一行,返回,每一次取能走到该点的最大值加上该点,继续返回,代码很好理解,只是复杂度为2n

下面我们再来讲一下递推,代码如下:

首先是第一层循环,将三角形最下面一层全部赋值给dp,然后从下往上求解,输出dp[1][1]即是最大值。这样复杂度便只有n2

那么搜索可以做到吗?当然可以,这就是我们说的记忆化,只需要在搜索算法中加入if即可,代码如下:

 这样搜索算法的复杂度也降到了n2,为什么要加这样一句话呢?我们可以发现,当我们从第2层的“3”往下走会经过“1”,计算一次从1出发的递归;从第2层的“8”往下走也会经过“1”,又重新计算了“1”出发的递归,为了避免这样的重复,使用记忆化便能避免,从而降低复杂度。

posted @   DemonSlayer  阅读(276)  评论(0编辑  收藏  举报
编辑推荐:
· 深入理解 Mybatis 分库分表执行原理
· 如何打造一个高并发系统?
· .NET Core GC压缩(compact_phase)底层原理浅谈
· 现代计算机视觉入门之:什么是图片特征编码
· .NET 9 new features-C#13新的锁类型和语义
阅读排行:
· Spring AI + Ollama 实现 deepseek-r1 的API服务和调用
· 《HelloGitHub》第 106 期
· 数据库服务器 SQL Server 版本升级公告
· 深入理解Mybatis分库分表执行原理
· 使用 Dify + LLM 构建精确任务处理应用
点击右上角即可分享
微信分享提示