123789456ye

已AFO

JSOI2016

A 最佳团体

题面:Luogu
题解:分数规划+树形背包
\(dp[u][j]\)表示根为u,选了k个人(加上自己)的最大值
转移很简单,判断直接看是否\(dp[1][k]>=0\)就可以了
注意这道题卡常,我把eps调到了1e-4,上界调到了1e2才过(然而可以卡掉),还把双向边去掉了
codeA

B 独特的树叶

题面:Luogu
题解:树hash
树hash感觉好奇怪啊
一种是取模,另一种是异或,都是由转移方程推出来的(取模不能换根,异或可以)
另外你base取得不同有时候也会出现一些奇怪的问题
这道题就是先把A给Hash掉,把所有值扔到set里(map,unordered_map应该也行)
然后枚举B的树叶,求以这片叶子的儿子的Hash值,然后看set里有没有,有的话就输出
codeB

C 扭动的回文串

题面:Luogu
题解:manacher+hash
显然前两种情况跑一下manacher即可
第三种情况必定是两端对称加上中间一段回文(全部可以为空),比如\(BC\ E\ CB\)
所以二分两端对称半径即可
codeC

D 灯塔

这里

codeA

#include<bits/stdc++.h>
using namespace std;
inline void read(int& x)
{
	x = 0; char c = getchar();
	while (!isdigit(c)) c = getchar();
	while (isdigit(c)) x = x * 10 + c - '0', c = getchar();
}
#define maxn 2505
#define eps 1e-4
struct Edge
{
	int fr, to;
}eg[maxn << 1];
int head[maxn], edgenum;
inline void add(int fr, int to)
{
	eg[++edgenum] = { head[fr],to };
	head[fr] = edgenum;
}
double l, r, mid, dp[maxn][maxn], v[maxn];
int K, n, cost[maxn], val[maxn], siz[maxn];

void dfs(int rt, int fa)
{
	dp[rt][0] = 0, dp[rt][1] = v[rt], siz[rt] = 1;
	for (int i = head[rt]; i; i = eg[i].fr)
	{
		//if (eg[i].to == fa) continue;
		dfs(eg[i].to, rt);
		for (int j = siz[rt]; j; --j)
			for (int k = 0; k <= siz[eg[i].to]; ++k)
				dp[rt][j + k] = max(dp[rt][j + k], dp[rt][j] + dp[eg[i].to][k]);
		siz[rt] += siz[eg[i].to];
	}
}
bool check()
{
	for (int i = 2; i <= n; ++i) v[i] = val[i] - cost[i] * mid;
	for (int i = 1; i <= n; ++i)
		for (int j = 1; j <= K; ++j)
			dp[i][j] = -1e9;
	dfs(1, 0);
	return dp[1][K] >= 0;
}
int main()
{
	read(K), read(n), ++n, ++K;
	for (int i = 2, tp; i <= n; ++i)
		read(cost[i]), read(val[i]), read(tp), ++tp, add(tp, i);//add(i,tp);
	l = 0, r = 1e2;
	while (r - l > eps)
	{
		mid = (l + r) / 2;
		if (check()) l = mid;
		else r = mid;
	}
	printf("%.3lf\n", l);
	return 0;
}

top

codeB

#include<bits/stdc++.h>
using namespace std;
inline void read(int& x)
{
	x = 0; char c = getchar();
	while (!isdigit(c)) c = getchar();
	while (isdigit(c)) x = x * 10 + c - '0', c = getchar();
}
#define ull unsigned long long
const ull base=1e9+7;
#define maxn 100005
set<ull> s;
struct Graph
{
	struct Edge
	{
		int fr, to;
	}eg[maxn << 1];
	int head[maxn], edgenum, num;
	int siz[maxn], deg[maxn];
	ull val[maxn], Hash[maxn];
	inline void add(int fr, int to)
	{
		eg[++edgenum] = { head[fr],to };
		head[fr] = edgenum; ++deg[to];
	}
	inline void init()
	{
		int x, y;
		for (int i = 1; i < num; ++i) read(x), read(y), add(x, y), add(y, x);
	}
#define to eg[i].to
	void dfs_gethash(int rt, int fa)
	{
		siz[rt] = 1; val[rt] = 1;
		for (int i = head[rt]; i; i = eg[i].fr)
		{
			if (to == fa) continue;
			dfs_gethash(to, rt);
			siz[rt] += siz[to];
			val[rt] ^= val[to] * base + siz[to];
		}
	}
	void dfs_changeroot(int rt, int fa)
	{
		Hash[rt] = fa ? val[rt] ^ ((Hash[fa] ^ (val[rt] * base + siz[rt])) * base + num - siz[rt]) : val[rt];
		for (int i = head[rt]; i; i = eg[i].fr)
			if (to != fa) dfs_changeroot(to, rt);
	}
	inline bool isleaf(int rt)
	{
		return deg[rt] == 1;
	}
#undef to
	inline bool check(int rt)
	{
		return s.count(Hash[eg[head[rt]].to] ^ (val[rt] * base + 1));
	}
}A, B;
int n;
int main()
{
	//freopen("test.in", "r", stdin);
	read(n);
	A.num = n, B.num = n + 1;
	A.init(), B.init();
	A.dfs_gethash(1, 0); A.dfs_changeroot(1, 0);
	for (int i = 1; i <= A.num; ++i) s.insert(A.Hash[i]);
	for (int i = 1; i <= B.num; ++i)
		if (!B.isleaf(i))
		{
			B.dfs_gethash(i, 0);
			B.dfs_changeroot(i, 0);
			break;
		}
	for (int i = 1; i <= B.num; ++i)
		if (B.isleaf(i) && B.check(i))
		{
			printf("%d\n", i);
			break;
		}
	return 0;
}

top

codeC

#include<bits/stdc++.h>
using namespace std;
#define maxn 200005
#define base 131
#define ull unsigned long long
struct str
{
	char s[maxn];
	int len, p[maxn];
	void Gets()
	{
		char c = getchar();
		s[0] = '~', s[len = 1] = '#';
		while (!isalpha(c)) c = getchar();
		while (isalpha(c)) s[++len] = c, s[++len] = '#', c = getchar();
	}
	void manacher()
	{
		for (int i = 1, r = 0, mid = 0; i <= len; ++i)
		{
			if (i <= r) p[i] = min(p[(mid << 1) - i], r - i + 1);
			while (s[i - p[i]] == s[i + p[i]]) ++p[i];
			if (p[i] + i > r) r = p[i] + i - 1, mid = i;
		}
	}
	void init()
	{
		Gets();
		manacher();
	}
}A, B;
int ans, n;
ull Hasha[maxn], Hashb[maxn], Pow[maxn];
inline bool check(int l1, int r1, int l2, int r2)
{
	int len = r1 - l1 + 1;
	ull x = Hasha[r1] - Hasha[l1 - 1] * Pow[len];
	ull y = Hashb[l2] - Hashb[r2 + 1] * Pow[len];
	return x == y;
}
inline int solve(int L, int R)
{
	int l = 0, r = min(L, n - R + 1), mid, ans = 0;
	while (l <= r)
	{
		mid = (l + r) >> 1;
		if (check(L - mid + 1, L, R, R + mid - 1)) l = mid + 1, ans = mid;
		else r = mid - 1;
	}
	return ans;
}
int main()
{
	scanf("%d", &n);
	A.init(); B.init();
	for (int i = 1; i <= A.len; ++i) --A.p[i], --B.p[i];
	Pow[0] = 1;
	for (int i = 1; i <= n; ++i)
	{
		ans = max(ans, max(A.p[i], B.p[i]));
		Pow[i] = Pow[i - 1] * base;
	}
	for (int i = 2; i <= A.len; i += 2) Hasha[i >> 1] = Hasha[(i >> 1) - 1] * base + A.s[i];
	for (int i = B.len - 1; i > 1; i -= 2) Hashb[i >> 1] = Hashb[(i >> 1) + 1] * base + B.s[i];
	int l, r;
	for (int i = 2; i < A.len; ++i)
	{
		l = (i - A.p[i] + 1) >> 1, r = (i + A.p[i]) >> 1;
		ans = max(ans, A.p[i] + solve(l - 1, r) * 2);
	}
	for (int i = 2; i < B.len; ++i)
	{
		l = (i - B.p[i] + 1) >> 1, r = (i + B.p[i]) >> 1;
		ans = max(ans, B.p[i] + solve(l, r + 1) * 2);
	}
	printf("%d\n", ans);
	return 0;
}

top

posted @ 2020-02-29 22:17  123789456ye  阅读(163)  评论(0编辑  收藏  举报