洛谷 P2008 大朋友的数字

 

DP,动态规划   树状数组   最长不下降子序列

 

by  GeneralLiu

 

 

题目

 

就是说给一串由 0~9 组成的序列

求 以 i (1~n) 结尾 的 最长不下降子序列 的 和

(最长不下降子序列不唯一时选编号字典序最小的)

 

 

 

两步

1 求最长不下降子序列

2 求 步骤1 的和

 

1

O(n^2) 暴力不必说 (因为数字只有 0~9 十个, 即10*n, 所以就是 O(n)啊)

O(n logn) 树状数组 log10≈3.几,即3*n 也可以算 O(n)啊;

对于 数值x 查询 以0~x结尾的 最长不下降子序列 长度 

所得长度 +1 即为所求

用 树状数组 维护

!!!!

树状数组没有 0 啊

那就每个数 查询和更新 都加一

因为这个我卡了 TLE 当时相当不解 

 

2

再开一个数组保存序列和

在步骤1中一起维护即可

详见代码 query() 和 update()

 

代码

#include<bits/stdc++.h>
using namespace std;
#define low k&-k
int ret,l,n,tree[10010],s[10010];
void query(int k){ //查询 
    ret=s[k],l=tree[k]; //ret为序列和 l为长度 两个全局变量 
    for(k-=low;k;k-=low)
        if(l<tree[k])//因为要保证字典序 所以 == 时 答案不改
            l=tree[k],ret=s[k]; //长度更改时 序列和才会更改 
}
void update(int k){ //更新 
    for(;k<=10;k+=low)
        if(tree[k]<l) //因为要保证字典序 所以 == 时 不作修改 
            tree[k]=l,s[k]=ret; //长度更新时 序列和才会更新 
}
int main(){
    scanf("%d",&n);
    for(int v,i=1;i<=n;i++){
        scanf("%d",&v);
        query(v+1); //树状数组没有 0 要统一 +1  
        ret+=v; 
        l++;//长度再加上 本身 
        printf("%d ",ret);
        update(v+1);
    }
    return 0;
}/*5
0 2 5 3 4*/

 

posted @ 2017-05-26 08:36  GeneralLiu  阅读(355)  评论(1编辑  收藏  举报