Hadoop学习笔记—9.Partitioner与自定义Partitioner

Hadoop学习笔记—9.Partitioner与自定义Partitioner

一、初步探索Partitioner

1.1 再次回顾Map阶段五大步骤

  在第四篇博文《初识MapReduce》中,我们认识了MapReduce的八大步凑,其中在Map阶段总共五个步骤,如下图所示:

map steps

  其中,step1.3就是一个分区操作。通过前面的学习我们知道Mapper最终处理的键值对<key, value>,是需要送到Reducer去合并的,合并的时候,有相同key的键/值对会送到同一个Reducer节点中进行归并。哪个key到哪个Reducer的分配过程,是由Partitioner规定。在一些集群应用中,例如分布式缓存集群中,缓存的数据大多都是靠哈希函数来进行数据的均匀分布的,在Hadoop中也不例外。

1.2 Hadoop内置Partitioner

  MapReduce的使用者通常会指定Reduce任务和Reduce任务输出文件的数量(R)。用户在中间key上使用分区函数来对数据进行 分区,之后在输入到后续任务执行进程。一个默认的分区函数式使用hash方法(比如常见的:hash(key) mod R)进行分区。hash方法能够产生非常平衡的分区,鉴于此,Hadoop中自带了一个默认的分区类HashPartitioner,它继承了 Partitioner类,提供了一个getPartition的方法,它的定义如下所示:

复制代码
/** Partition keys by their {@link Object#hashCode()}. */
public class HashPartitioner<K, V> extends Partitioner<K, V> {
  /** Use {@link Object#hashCode()} to partition. */
  public int getPartition(K key, V value,
                          int numReduceTasks) {
    return (key.hashCode() & Integer.MAX_VALUE) % numReduceTasks;
  }

}
复制代码

  现在我们来看看HashPartitoner所做的事情,其关键代码就一句:(key.hashCode() & Integer.MAX_VALUE) % numReduceTasks; 

  这段代码实现的目的是将key均匀分布在Reduce Tasks上,例如:如果Key为Text的 话,Text的hashcode方法跟String的基本一致,都是采用的Horner公式计算,得到一个int整数。但是,如果string太大的话这 个int整数值可能会溢出变成负数,所以和整数的上限值Integer.MAX_VALUE(即0111111111111111)进行与运算,然后再对 reduce任务个数取余,这样就可以让key均匀分布在reduce上。 

partitoner

二、自己定制Partitioner

  大部分情况下,我们都会使用默认的分区函数HashPartitioner。但有时我们又有一些特殊的应用需求,所以我们需要定制Partitioner来完成我们的业务。这里以第五篇—自定义数据类型处理手机上网日志为例,来对其中的日志内容做一个特殊的分区:

  从上图中我们可以发现,在第二列上并不是所有的数据都是手机号(例如:84138413并不是一个手机号),我们任务就是在统计手机流量时,将手机号码和非手机号输出到不同的文件中。

2.1 自定义KpiPartitioner

复制代码
    /*
     * 自定义Partitioner类
     */
    public static class KpiPartitioner extends Partitioner<Text, KpiWritable> {
        @Override
        public int getPartition(Text key, KpiWritable value, int numPartitions) {
            // 实现不同的长度不同的号码分配到不同的reduce task中
            int numLength = key.toString().length();
            if (numLength == 11) {
                return 0;
            } else {
                return 1;
            }
        }
    }
复制代码

  这里按手机和非手机号码的区分是按该字段的长度来划分,如果是11位则为手机号。接下来,就是重新修改run方法中的代码:设置为打包运行,设置Partitioner为KpiPartitioner,设置ReducerTask的个数为2

复制代码
    public int run(String[] args) throws Exception {
        // 首先删除输出目录已生成的文件
        FileSystem fs = FileSystem.get(new URI(INPUT_PATH), getConf());
        Path outPath = new Path(OUTPUT_PATH);
        if (fs.exists(outPath)) {
            fs.delete(outPath, true);
        }
        // 定义一个作业
        Job job = new Job(getConf(), "MyKpiJob");
        // 分区需要设置为打包运行
        job.setJarByClass(MyKpiJob.class);
        // 设置输入目录
        FileInputFormat.setInputPaths(job, new Path(INPUT_PATH));
        // 设置自定义Mapper类
        job.setMapperClass(MyMapper.class);
        // 指定<k2,v2>的类型
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(KpiWritable.class);
        // 设置Partitioner
        job.setPartitionerClass(KpiPartitioner.class);
        job.setNumReduceTasks(2);
        // 设置Combiner
        job.setCombinerClass(MyReducer.class);
        // 设置自定义Reducer类
        job.setReducerClass(MyReducer.class);
        // 指定<k3,v3>的类型
        job.setOutputKeyClass(Text.class);
        job.setOutputKeyClass(KpiWritable.class);
        // 设置输出目录
        FileOutputFormat.setOutputPath(job, new Path(OUTPUT_PATH));
        // 提交作业
        System.exit(job.waitForCompletion(true) ? 0 : 1);
        return 0;
    }
复制代码

注意:分区的例子必须要设置为打成jar包运行!

2.2 打成jar包并在Hadoop中运行

  (1)通过Eclipse导出jar包

  (2)通过FTP上传到Linux中,可以使用各种FTP工具,我一般使用XFtp。

  (3)通过Hadoop Shell执行jar包中的程序

  

  (4)查看执行结果文件:

  首先是part-r-00000,它展示了手机号码的统计结果

  然后是part-r-00001,它展示了非手机号码的统计结果

  (5)通过Web接口验证Partitioner的运行:通过访问http://hadoop-master:50030

  ①是否有2个Reduce任务?

  从图中可以看出,总共有2个Reduce任务;

  ②Reduce输出结果是否一致?

  手机号码有20条记录,一致!

  非手机号码只有1条记录,一致!

总结:分区Partitioner主要作用在于以下两点

(1)根据业务需要,产生多个输出文件;

(2)多个reduce任务并发运行,提高整体job的运行效率

参考资料

(1)吴超,《深入浅出Hadoop》:http://115.28.208.222/

(2)万川梅、谢正兰,《Hadoop应用开发实战详解(修订版)》:http://item.jd.com/11508248.html

(3)Suddenly,《Hadoop日记Day17-分区》:http://www.cnblogs.com/sunddenly/p/4009568.html

(4)三劫散仙,《如何使用Hadoop中的Partitioner》:http://qindongliang.iteye.com/blog/2043136

 

posted on 2015-11-18 16:59  1130136248  阅读(183)  评论(0编辑  收藏  举报

导航