hdu 4386Quadrilateral

http://acm.hdu.edu.cn/showproblem.php?pid=4386

Quadrilateral

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 937    Accepted Submission(s): 421


Problem Description
  One day the little Jack is playing a game with four crabsticks. The game is simple, he want to make all the four crabsticks to be a quadrilateral, which has the biggest area in all the possible ways. But Jack’s math is so bad, he doesn’t know how to do it, can you help him using your excellent programming skills?
 

 

Input
  The first line contains an integer N (1 <= N <= 10000) which indicates the number of test cases. The next N lines contain 4 integers a, b, c, d, indicating the length of the crabsticks.(1 <= a, b, c, d <= 1000)
 

 

Output
  For each test case, please output a line “Case X: Y”. X indicating the number of test cases, and Y indicating the area of the quadrilateral Jack want to make. Accurate to 6 digits after the decimal point. If there is no such quadrilateral, print “-1” instead.
 

 

Sample Input
2 1 1 1 1 1 2 3 4
 

 

Sample Output
Case 1: 1.000000 Case 2: 4.898979
 

 

Author
WHU
 
四边形不稳定,给定四边后不能确定面积。面积最大的是圆内接四边形,设四边长为abcd,半周长为p,则最大面积=sqrt((p-a)*(p-b)*(p-c)*(p-d))。。忘了怎么证明去了。
View Code
 1 #include <stdio.h>
 2 #include <stdlib.h>
 3 #include<math.h>
 4 int main()
 5 {
 6       int t;
 7       int a,b,c,d,max,count=0;
 8       double p,ans;
 9       scanf("%d",&t);
10       while(t--)
11       {
12             scanf("%d%d%d%d",&a,&b,&c,&d);
13             if(a>b) max=a;
14             else max=b;
15             if(max<b) max=b;
16             if(max<c) max=c;
17             if(max<d) max=d;
18             if(max-(a+b+c+d-max)>=0)
19             {
20                   printf("Case %d: -1\n",++count);
21                   continue;
22             }
23             p=(a+b+c+d)*1.0/2;
24             ans=sqrt((p-a)*(p-b)*(p-c)*(p-d));
25             printf("Case %d: %.6lf\n",++count,ans);
26 
27 
28       }
29 }

 

posted on 2012-11-09 20:08  仁者无敌8勇者无惧  阅读(343)  评论(0编辑  收藏  举报

导航