Python高级架构模式的整理

Python高级架构模式的整理

1、残差连接是目前常用的组件,解决了大规模深度学习模型梯度消失和瓶颈问题。

通常,在10层以上的模型中追加残差连接可能有帮助。

JavaScript

from keras import layers
 
x = ...
 
y = layers.Conv2D(128, 3, activation='relu', padding='same')(x)
y = layers.Conv2D(128, 3, activation='relu', padding='same')(y)
y = layers.MaxPooling2D(2, strides=2)(y)
 
# 形状不同,要做线性变换:
residual = layers.Conv2D(128, 1, strides=2, padding='same')(x)  # 使用 1×1 卷积,将 x 线性下采样为与 y 具有相同的形状
 
y = layers.add([y, residual])

2、标准化用于使模型看到的不同样本更相似,有助于模型的优化和泛化。

JavaScript

# Conv
conv_model.add(layers.Conv2D(32, 3, activation='relu'))
conv_model.add(layers.BatchNormalization())
www.10zhan.com
 
# Dense
dense_model.add(layers.Dense(32, activation='relu'))
dense_model.add(layers.BatchNormalization())
3、深度可分离卷积层,在Keras中被称为SeparableConv2D,其功能与普通Conv2D相同。
但是SeparableConv2D比Conv2D轻,训练快,精度高。
from tensorflow.keras.models import Sequential, Model
from tensorflow.keras import layers
 
height = 64
width = 64
channels = 3
num_classes = 10
 
model = Sequential()
model.add(layers.SeparableConv2D(32, 3,
                                 activation='relu',
                                 input_shape=(height, width, channels,)))
model.add(layers.SeparableConv2D(64, 3, activation='relu'))
model.add(layers.MaxPooling2D(2))
 
model.add(layers.SeparableConv2D(64, 3, activation='relu'))
model.add(layers.SeparableConv2D(128, 3, activation='relu'))
model.add(layers.MaxPooling2D(2))
 
model.add(layers.SeparableConv2D(64, 3, activation='relu'))
model.add(layers.SeparableConv2D(128, 3, activation='relu'))
model.add(layers.GlobalAveragePooling2D())
 
model.add(layers.Dense(32, activation='relu'))
model.add(layers.Dense(num_classes, activation='softmax'))
 
model.compile(optimizer='rmsprop', loss='categorical_crossentropy')

以上就是Python高级架构模式的整理,希望对大家有所帮助。

本文教程操作环境:windows7系统、Python 3.9.1,DELL G3电脑。

 

posted @ 2022-10-28 19:21  很酷的站长  阅读(21)  评论(0编辑  收藏  举报
70博客 AI工具 源码下载