LaTeX 公式手册(按年级分类)

快速入门

本文参考 Cmd Markdown 公式指导手册

输入公式

行内公式用 $数学公式$,行间公式用

$$
数学公式
$$

行内公式放在文中与其它文字混编,行间公式单独成行。例子:

行内公式 \(x=1\) 与文字混排

行间公式

\[x=1 \]

独立成行

行内公式 $x=1$ 与文字混排

行间公式
$$
x=1
$$
独立成行

若需要给公式编号,参见 大括号和行标的使用

上下标

^ 表示上标,_ 表示下标。如果上下标的内容多于一个字符,需要用 {} 将这些内容括成一个整体。上下标可以嵌套,也可以同时使用,上下标的先后次序并不重要,二者互不影响。

例子:\(x^{y^z}=(1+{\rm e}^x)^{-2xy^w}\)

有时需要在符号的左上,左下角加上角标,此时可以在要加角标字符前面使用空的分组,给空分组加角标:\({}_m^n H\) {}_m^n H

撇号

数学公式中的 \('\) 号(一个英文单引号')就是一种特殊的上标,撇号可以与下标混用,也可以连续使用(普通的上标不能连续使用),但不能与上标直接混用。例子:

\(a = a'\) a = a'

\(b_0' = b_0''\) b_0' = b_0''

\({c'}^2 = (c')^2\) {c'}^2 = (c')^2

\({\color{Red}{\rm Bad}}: c'^2\) c'^2

角度

MathJax 没有直接表示角度的符号,可以用符号 \(\circ\)\circ)的上标表示。例子:\(\angle A = 90^\circ\) \angle A = 90^\circ

小学

四则运算

加减乘除 \(+-\times\div\) + - \times \div
点乘 \(\cdot\) \cdot

小数

无限小数 \(3.1415926 \cdots\) 3.1415926 \cdots

循环节
\(1.\dot{3}\) 1.\dot{3}或者1.\dot 3
\(1.\dot{1}2\dot{3}\) 1.\dot{1}2\dot{3}或者1.\dot 12\dot 3

分数

\(\frac13\) \frac{1}{3}\frac 131 \over 3

\(\frac{21}{5}\) \frac{21}{5}21 \over 5

比大小

大于号、小于号、等号 \(> < =\) > < =

大于等于 \(\ge\) ge\geq
     \(\geqslant\) \geqslant

小于等于 \(\le\) le\leq
     \(\leqslant\) \leqslant

约等号 \(\approx\) \approx

括号

【小型的】小括号、中括号、大括号 \(()[]\{\}\) ()[]\{\}

【自动放大的】小括号、中括号、大括号 \(\left(\right)\left[\right]\left\{\right\}\) \left( \right) \left[ \right] \left\{ \right\}

两种括号对比:

\((\dfrac 13)\) (\dfrac 13) \(\Leftrightarrow \left( \dfrac 13 \right)\) \left( \dfrac 13 \right)

括号内有分数时,应该使用第二种括号

圆周率

\(\pi\) \pi

更多希腊字母参见这里

初中

注意:这里不含小学已经学过的符号。

运算符号/函数符号

  • 绝对值 \(\left\vert s \right\vert\) \left| s \right|\lvert s \lvert\left\vert s \right\vert
  • 乘方/指数/上标
    \(a^n\) a^na^{n}\(a^{10}\) a^{10}
  • 方根/根号
    • 平方根 \(\sqrt{x},\sqrt[2]{x}\) \sqrt{x},\sqrt[2]{x}
    • 立方根/n次方根 \(\sqrt[3]{x+y},\sqrt[n]{x}\) \sqrt[3]{x+y},\sqrt[n]{x}
    • 根号 \(\surd\) \surd
  • 三角函数
    • 正弦 \(\sin x\) \sin x
    • 余弦 \(\cos \left(x+\frac \pi 2 \right)\) \cos \left( x+\frac{\pi}{2} \right)
    • 正切 \(\tan x\) \tan x

一元二次方程

  • 判别式 \(\Delta = b^2-4ac\) \Delta = b^2-4ac

方程组/不等式组

\[\begin{cases}3x+5y+z\\7x-2y+4z\\-6x+3y+2z\end{cases} \]

\begin{cases}
  3x + 5y +  z \\
  7x - 2y + 4z \\
  -6x + 3y + 2z
\end{cases}

\[\left\{\begin{aligned} 3x + 5y + z \\ 7x - 2y + 4z \\ -6x + 3y + 2z \end{aligned}\right. \]

\left\{\begin{aligned}
  3x + 5y +  z \\
  7x - 2y + 4z \\
  -6x + 3y + 2z
\end{aligned}\right.

几何

  • 因为、所以 \(\because\) \because \(\therefore\) \therefore
  • 角的符号 \(\angle A\) \angle A
  • 平行符号
    • 自带的是竖直样式 \(\parallel\) \parallel
    • 用斜杆+紧贴造一个倾斜的平行符号 \(/\!/\) /\!/
    • 更繁琐的 \(\mathrel{/\mskip-2.5mu/}\) \mathrel{/\mskip-2.5mu/}
  • 垂直 \(\perp\) \perp
  • 平行且相等 LaTeX中没有这个符号
  • 三角形符号 \(\triangle\) \triangle(注意和一元二次方程的判别式 \(\Delta\) 不同)
  • 平行四边形的符号 LaTeX中没有这个符号,只能用Unicode字符
  • 全等
    • 自带的与国内教科书方向相反 \(\cong\) \cong
    • 想要 \(≌\) 只能用Unicode字符
  • 相似
    • 国内教科书写法 \(\backsim\) \backsim
    • 国外常见写法 \(\sim\) \sim
  • 圆的符号 \(\odot,\bigodot\) \odot,\bigodot
  • 弧的符号 MathJax里没有现成的符号,只能造一个 \(\overset {\frown}{AB}\) \overset{\frown}{AB}

统计

  • 平均数 \(\bar{x}\) \bar{x}

希腊字母

常用于表示角的字母:阿尔法,贝塔,伽马 \(\alpha \beta \gamma\) \alpha \beta \gamma
一元二次方程的判别式 \(\Delta\) \Delta

密度 \(\rho\) \rho
电阻单位 欧姆 \(\Omega\) \Omega
效率/机械效率/热效率 \(\eta\) \eta
电磁波 \(c=\lambda\nu\):波长 \(\lambda\) \lambda;频率 \(\nu\) \nu

更多希腊字母参见这里

高中

注意:这里不含小学、初中已经学过的符号。

分数/分式

通常使用 \frac {分子} {分母} 命令产生一个分数,分数可嵌套。
便捷情况可直接输入 \frac ab 来快速生成一个 \(\frac ab\)
如果分式很复杂,亦可使用 分子 \over 分母 命令,此时分数仅有一层。

分数 \({\dfrac {2}{4}}=0.5\) \frac{2}{4}=0.5

小型分数 \({\tfrac {2}{4}}=0.5\) \tfrac{2}{4} = 0.5

连分式(大型嵌套分式) \({\cfrac {2}{c+{\cfrac {2}{d+{\cfrac {2}{4}}}}}}=a\) \cfrac{2}{c + \cfrac{2}{d + \cfrac{2}{4}}} = a

大型不嵌套分式 \({\dfrac {2}{4}}=0.5\qquad {\dfrac {2}{c+{\dfrac {2}{d+{\dfrac {2}{4}}}}}}=a\) \dfrac{2}{4} = 0.5 \qquad \dfrac{2}{c + \dfrac{2}{d + \dfrac{2}{4}}} = a

在指数、极限和积分中尽量不要使用 \frac 符号:它会使整段函数看起来很怪,而且可能产生歧义。也正是因此它在专业数学排版中几乎从不出现。
横着写这些分式,中间使用斜线间隔 / (用斜线代替分数线)。

  • 例子:
\begin{array}{cc}
\mathrm{Bad} & \mathrm{Better} \\
\hline \\
e^{i\frac{\pi}2} \quad e^{\frac{i\pi}2}& e^{i\pi/2} \\
\int_{-\frac\pi2}^\frac\pi2 \sin x\,dx & \int_{-\pi/2}^{\pi/2}\sin x\,dx \\
\end{array}
  • 显示:

\[\begin{array}{cc} \mathrm{Bad} & \mathrm{Better} \\ \hline \\ e^{i\frac{\pi}2} \quad e^{\frac{i\pi}2}& e^{i\pi/2} \\ \int_{-\frac\pi2}^\frac\pi2 \sin x\,dx & \int_{-\pi/2}^{\pi/2}\sin x\,dx \\ \end{array} \]

集合

  • 特殊的集合

空集 \(\varnothing\) \varnothing

黑板报体(大学普遍使用)

正整数集 \(\mathbb{N_+}/\mathbb{N^*}/\mathbb{Z_+}/\mathbb{Z^*}\) \mathbb{N^+}/\mathbb{N^*}/\mathbb{Z^+}/\mathbb{Z^*}
自然数集 \(\mathbb{N}\) \mathbb{N}
整数集 \(\mathbb{Z}\) \mathbb{Z}
有理数集 \(\mathbb{Q}\) \mathbb{Q}
实数集 \(\mathbb{R}\) \mathbb{R}
复数集 \(\mathbb{C}\) \mathbb{C}

粗体(高中常用)

正整数集 \(\mathbf{N_+}/\mathbf{N^*}/\mathbf{Z_+}/\mathbf{Z^*}\) \mathbf{N^+}/\mathbf{N^*}/\mathbf{Z^+}/\mathbf{Z^*}
自然数集 \(\mathbf{N}\) \mathbf{N}
整数集 \(\mathbf{Z}\) \mathbf{Z}
有理数集 \(\mathbf{Q}\) \mathbf{Q}
实数集 \(\mathbf{R}\) \mathbf{R}
复数集 \(\mathbf{C}\) \mathbf{C}

  • 元素与集合的关系

属于与不属于 \(\in ,\notin ,\not \in ,\ni ,\not \ni\) \in, \notin, \not\in, \ni, \not\ni

  • 集合与集合的关系

包含于/子集 \(\subseteq\) \subseteq
真包含于/真子集 \(\subsetneqq\) \subsetneqq
不包含于/不是子集 \(\nsubseteq\) \nsubseteq

立体几何中常把 \(\subsetneqq\) 简写作 \(\subset\) \subset

  • 集合运算

交集,并集 \(\cap,\cup\) \cap,\cup
补集 \(\complement_U A\) \complement_U A

以上为国内教科书写法,完整符号表看[这里]({{< ref "#set" >}})

基本初等函数

  • 对数函数 \(\log x,\ln x,\lg x\) \log x,\ln x,\lg x

  • 三角函数 \(\sin x,\cos x,\tan x\) \sin x,\cos x,\tan x

    全部三角函数参见这里

向量

  • 向量符号:单个字母用\vec,两个字母用\overrightarrow

    \(\vec{a}, \overrightarrow{AB}\) \vec{a}, \overrightarrow{AB}

逻辑

  • 或、与、非 \(\lor, \land, \lnot\) \lor, \land, \lnot
  • 全称量词(对于所有) \(\forall\) \forall
  • 存在量词 \(\exists\) \exists
  • 充分条件/可推出 \(\implies\) \implies
  • 必要条件 \(\impliedby\) \impliedby
  • 充分必要条件/充要条件/等价于/当且仅当(if and only if\(\iff\) \iff

国内常见版本(不推荐,箭头两边无空格):

\(\Rightarrow, \Leftarrow, \Leftrightarrow\) \Rightarrow, \Leftarrow, \Leftrightarrow

统计与概率

  • 最小二乘法/线性回归方程

参数的估计值(俗称 a 尖 b 尖)\(\hat{a},\hat{b}\) \hat{a},\hat{b}

微积分基础

自然对数的底数 e 要用正体 \(\mathrm{e}\) \mathrm{e}

  • 无穷大/无限 \(\infty\) \infty

  • 极限 \lim_{x\to 0} \frac{\sin x}{x}=1

    行内公式 \(\lim_{x\to 0} \frac{\sin x}{x}=1\)

    行间公式

    \[\lim_{x\to 0} \frac{\sin x}{x}=1 \]

  • 导数/导函数 \(f'(x)\) f'(x)

  • 积分

    • 版本一 \int_0^1 x^2\,dx(d 之前加空格 \,

      行内 \(\int_0^1 x^2\,dx\)

      行间

      \[\int_0^1 x^2\,dx \]

    • 版本二

      \int_0^1 x^2\,\mathrm{d}x(d 之前加空格,d 用正体)

      行内 \(\int_0^1 x^2\,\mathrm{d}x\)

      行间

      \[\int_0^1 x^2\,\mathrm{d}x \]

复数

虚数单位 i 要用正体 \(\mathrm{i}\) \mathrm{i}

计数原理

表示排列数组合数的 A 和 C 同样要用正体

  • 排列 \(\mathrm{A}_3^2\) \mathrm{A}_3^2
  • 组合 \(\mathrm{C}_3^2\) \mathrm{C}_3^2

物理

  • 正比于 \(\propto\) \propto

希腊字母

正弦型函数 \(y=A\sin(\omega x+\varphi)\) y=A\sin(\omega x+\varphi)

圆频率或角频率或角速度 \(\omega\) \omega

初相位或初相角/辅助角公式常用字母 \(\varphi\) \varphi

摩擦因数/动摩擦因数 \(\mu\) \mu

平行板电容器的电容 \(C=\frac{\varepsilon S}{4\pi k d}\)

介电常数 \(\varepsilon\) \varepsilon

更多希腊字母参见这里

完整文档

!待整理

参考维基百科的数学公式教程
参考Cmd Markdown 公式指导手册

本文为 MathJax 在 Markdown 环境下的语法指引。

如何插入公式

\(\LaTeX\) 的数学公式有两种:行中公式和独立公式(行间公式)。行中公式放在文中与其它文字混编,独立公式单独成行。

行中公式可以用如下方法表示:

$ 数学公式 $

独立公式可以用如下方法表示:

$$ 数学公式 $$

函数、符号及特殊字符

声调 / 变音符号

\dot{a}, \ddot{a}, \acute{a}, \grave{a}

\({\displaystyle {\dot {a}},{\ddot {a}},{\acute {a}},{\grave {a}}}\)

\check{a}, \breve{a}, \tilde{a}, \bar{a}

\({\displaystyle {\check {a}},{\breve {a}},{\tilde {a}},{\bar {a}}}\)

\hat{a}, \widehat{a}, \vec{a}

\({\displaystyle {\hat {a}},{\widehat {a}},{\vec {a}}}\)

标准函数

指数

\exp_a b = a^b, \exp b = \mathrm{e}^b, 10^m

\({\displaystyle \exp _{a}b=a^{b},\exp b=\mathrm{e}^{b},10^{m}}\)

对数

\ln c, \lg d, \log \mathrm{e}, \log_{10} f

\({\displaystyle \ln c,\lg d,\log e,\log _{10}f}\)

三角函数

\sin a, \cos b, \tan c, \cot d, \sec e, \csc f

\({\displaystyle \sin a,\cos b,\tan c,\cot d,\sec e,\csc f}\)

\arcsin a, \arccos b, \arctan c

\({\displaystyle \arcsin a,\arccos b,\arctan c}\)

\arccot d, \arcsec e, \arccsc f

\({\displaystyle \operatorname {arccot} d,\operatorname {arcsec} e,\operatorname {arccsc} f}\)

\sinh a, \cosh b, \tanh c, \coth d

\({\displaystyle \sinh a,\cosh b,\tanh c,\coth d}\)

\operatorname{sh}k, \operatorname{ch}l, \operatorname{th}m, \operatorname{coth}n

\({\displaystyle \operatorname {sh} k,\operatorname {ch} l,\operatorname {th} m,\operatorname {coth} n}\)

\operatorname{argsh}o, \operatorname{argch}p, \operatorname{argth}q

\({\displaystyle \operatorname {argsh} o,\operatorname {argch} p,\operatorname {argth} q}\)

符号函数,绝对值

\sgn r, \left\vert s \right\vert\lvert s \rvert\left| s \right|

\({\displaystyle \operatorname {sgn} r,\left\vert s\right\vert }\)

最大值,最小值

\min(x,y), \max(x,y)

\({\displaystyle \min(x,y),\max(x,y)}\)

界限,极限

\min x, \max y, \inf s, \sup t

\({\displaystyle \min x,\max y,\inf s,\sup t}\)

\lim u, \liminf v, \limsup w

\({\displaystyle \lim u,\liminf v,\limsup w}\)

\lim_{x \to \infty} \frac{1}{n(n+1)}

\({\displaystyle \lim_{x \to \infty} \frac{1}{n(n+1)}}\)

\dim p, \deg q, \det m, \ker\phi

\({\displaystyle \dim p,\deg q,\det m,\ker \phi}\)

投射

\Pr j, \hom l, \lVert z \rVert, \arg z

\({\displaystyle \Pr j,\hom l,\lVert z\rVert ,\arg z}\)

微分及导数

dt, \mathrm{d}t, \partial t, \nabla\psi

\({\displaystyle dt,\mathrm {d} t,\partial t,\nabla \psi }\)

dy/dx, \mathrm{d}y/\mathrm{d}x, \frac{dy}{dx}, \frac{\mathrm{d}y}{\mathrm{d}x}, \frac{\partial^2}{\partial x_1\partial x_2}y

\({\displaystyle dy/dx,\mathrm {d} y/\mathrm {d} x,{\frac {dy}{dx}},{\frac {\mathrm {d} y}{\mathrm {d} x}},{\frac {\partial ^{2}}{\partial x_{1}\partial x_{2}}}y}\)

\prime, \backprime, f^\prime, f', f'', f^{(3)}, \dot y, \ddot y

\({\displaystyle \prime ,\backprime ,f^{\prime},f',f'',f^{(3)}\!,{\dot {y}},{\ddot {y}}}\)

类字母符号及常数

\infty, \aleph, \complement, \backepsilon, \eth, \Finv, \hbar

\({\displaystyle \infty ,\aleph ,\complement ,\backepsilon ,\eth ,\Finv ,\hbar}\)

\Im, \imath, \jmath, \Bbbk, \ell, \mho, \wp, \Re, \circledS

\({\displaystyle \Im ,\imath ,\jmath ,\Bbbk ,\ell ,\mho ,\wp ,\Re ,\circledS }\)

模运算

s_k \equiv 0 \pmod{m}

\({\displaystyle s_{k}\equiv 0{\pmod {m}}}\)

a \bmod b

\({\displaystyle a \bmod b}\)

\gcd(m, n), \operatorname{lcm}(m, n)

\({\displaystyle \gcd(m,n),\operatorname {lcm} (m,n)}\)

\mid, \nmid, \shortmid, \nshortmid

\({\displaystyle \mid ,\nmid ,\shortmid ,\nshortmid}\)

根号

\surd, \sqrt{2}, \sqrt[n]{}, \sqrt[3]{\frac{x^3+y^3}{2}}

\({\displaystyle \surd ,{\sqrt {2}},{\sqrt[{n}]{}},{\sqrt[{3}]{\frac {x^{3}+y^{3}}{2}}}}\)

运算符

+, -, \pm, \mp, \dotplus

\({\displaystyle +,-,\pm ,\mp ,\dotplus}\)

\times, \div, \divideontimes, /, \backslash

\({\displaystyle \times ,\div ,\divideontimes ,/,\backslash}\)

\cdot, * \ast, \star, \circ, \bullet

\({\displaystyle \cdot ,*\ast ,\star ,\circ ,\bullet}\)

\boxplus, \boxminus, \boxtimes, \boxdot

\({\displaystyle \boxplus ,\boxminus ,\boxtimes ,\boxdot}\)

\oplus, \ominus, \otimes, \oslash, \odot

\({\displaystyle \oplus ,\ominus ,\otimes ,\oslash ,\odot}\)

\circleddash, \circledcirc, \circledast

\({\displaystyle \circleddash ,\circledcirc ,\circledast}\)

\bigoplus, \bigotimes, \bigodot

\({\displaystyle \bigoplus ,\bigotimes ,\bigodot}\)

集合

\{ \}, \O \empty \emptyset, \varnothing

\({\displaystyle \{\},\emptyset \emptyset \emptyset ,\varnothing }\)

\in, \notin \not\in, \ni, \not\ni

\({\displaystyle \in ,\notin \not \in ,\ni ,\not \ni}\)

\cap, \Cap, \sqcap, \bigcap

\({\displaystyle \cap ,\Cap ,\sqcap ,\bigcap}\)

\cup, \Cup, \sqcup, \bigcup, \bigsqcup, \uplus, \biguplus

\({\displaystyle \cup ,\Cup ,\sqcup ,\bigcup ,\bigsqcup ,\uplus ,\biguplus}\)

\setminus, \smallsetminus, \times

\({\displaystyle \setminus ,\smallsetminus ,\times}\)

\subset, \Subset, \sqsubset

\({\displaystyle \subset ,\Subset ,\sqsubset}\)

\supset, \Supset, \sqsupset

\({\displaystyle \supset ,\Supset ,\sqsupset}\)

\subseteq, \nsubseteq, \subsetneq, \varsubsetneq, \sqsubseteq

\({\displaystyle \subseteq ,\nsubseteq ,\subsetneq ,\varsubsetneq ,\sqsubseteq}\)

\supseteq, \nsupseteq, \supsetneq, \varsupsetneq, \sqsupseteq

\({\displaystyle \supseteq ,\nsupseteq ,\supsetneq ,\varsupsetneq ,\sqsupseteq}\)

\subseteqq, \nsubseteqq, \subsetneqq, \varsubsetneqq

\({\displaystyle \subseteqq ,\nsubseteqq ,\subsetneqq ,\varsubsetneqq}\)

\supseteqq, \nsupseteqq, \supsetneqq, \varsupsetneqq

\({\displaystyle \supseteqq ,\nsupseteqq ,\supsetneqq ,\varsupsetneqq}\)

关系符号

=, \ne, \neq, \equiv, \not\equiv

\({\displaystyle =,\neq ,\neq ,\equiv ,\not \equiv}\)

\doteq, \doteqdot, \overset{\underset{\mathrm{def}}{}}{=}, :=

\({\displaystyle \doteq ,\doteqdot ,{\overset {\underset {\mathrm {def} }{}}{=}},:=}\)

\sim, \nsim, \backsim, \thicksim, \simeq, \backsimeq, \eqsim, \cong, \ncong

\({\displaystyle \sim ,\nsim ,\backsim ,\thicksim ,\simeq ,\backsimeq ,\eqsim ,\cong ,\ncong}\)

\approx, \thickapprox, \approxeq, \asymp, \propto, \varpropto

\({\displaystyle \approx ,\thickapprox ,\approxeq ,\asymp ,\propto ,\varpropto}\)

<, \nless, \ll, \not\ll, \lll, \not\lll, \lessdot

\({\displaystyle <,\nless ,\ll ,\not \ll ,\lll ,\not \lll ,\lessdot}\)

>, \ngtr, \gg, \not\gg, \ggg, \not\ggg, \gtrdot

\({\displaystyle>,\ngtr ,\gg ,\not \gg ,\ggg ,\not \ggg ,\gtrdot }\)

\le, \leq, \lneq, \leqq, \nleq, \nleqq, \lneqq, \lvertneqq

\({\displaystyle \leq ,\leq ,\lneq ,\leqq ,\nleq ,\nleqq ,\lneqq ,\lvertneqq}\)

\ge, \geq, \gneq, \geqq, \ngeq, \ngeqq, \gneqq, \gvertneqq

\({\displaystyle \geq ,\geq ,\gneq ,\geqq ,\ngeq ,\ngeqq ,\gneqq ,\gvertneqq}\)

\lessgtr, \lesseqgtr, \lesseqqgtr, \gtrless, \gtreqless, \gtreqqless

\({\displaystyle \lessgtr ,\lesseqgtr ,\lesseqqgtr ,\gtrless ,\gtreqless ,\gtreqqless}\)

\leqslant, \nleqslant, \eqslantless

\({\displaystyle \leqslant ,\nleqslant ,\eqslantless}\)

\geqslant, \ngeqslant, \eqslantgtr

\({\displaystyle \geqslant ,\ngeqslant ,\eqslantgtr}\)

\lesssim, \lnsim, \lessapprox, \lnapprox

\({\displaystyle \lesssim ,\lnsim ,\lessapprox ,\lnapprox}\)

\gtrsim, \gnsim, \gtrapprox, \gnapprox

\({\displaystyle \gtrsim ,\gnsim ,\gtrapprox ,\gnapprox}\)

\prec, \nprec, \preceq, \npreceq, \precneqq

\({\displaystyle \prec ,\nprec ,\preceq ,\npreceq ,\precneqq}\)

\succ, \nsucc, \succeq, \nsucceq, \succneqq

\({\displaystyle \succ ,\nsucc ,\succeq ,\nsucceq ,\succneqq}\)

\preccurlyeq, \curlyeqprec

\({\displaystyle \preccurlyeq ,\curlyeqprec}\)

\succcurlyeq, \curlyeqsucc

\({\displaystyle \succcurlyeq ,\curlyeqsucc}\)

\precsim, \precnsim, \precapprox, \precnapprox

\({\displaystyle \precsim ,\precnsim ,\precapprox ,\precnapprox}\)

\succsim, \succnsim, \succapprox, \succnapprox

\({\displaystyle \succsim ,\succnsim ,\succapprox ,\succnapprox}\)

几何符号

\parallel, \nparallel, \shortparallel, \nshortparallel

\({\displaystyle \parallel ,\nparallel ,\shortparallel ,\nshortparallel}\)

\perp, \angle, \sphericalangle, \measuredangle, 45^\circ

\({\displaystyle \perp ,\angle ,\sphericalangle ,\measuredangle ,45^{\circ}}\)

\Box, \blacksquare, \diamond, \Diamond \lozenge, \blacklozenge, \bigstar

\({\displaystyle \Box ,\blacksquare ,\diamond ,\Diamond \lozenge ,\blacklozenge ,\bigstar}\)

\bigcirc, \triangle, \bigtriangleup, \bigtriangledown

\({\displaystyle \bigcirc ,\triangle ,\bigtriangleup ,\bigtriangledown}\)

\vartriangle, \triangledown

\({\displaystyle \vartriangle ,\triangledown}\)

\blacktriangle, \blacktriangledown, \blacktriangleleft, \blacktriangleright

\({\displaystyle \blacktriangle ,\blacktriangledown ,\blacktriangleleft ,\blacktriangleright}\)

逻辑符号

\forall, \exists, \nexists

\({\displaystyle \forall ,\exists ,\nexists}\)

\therefore, \because, \And

\({\displaystyle \therefore ,\because ,\And}\)

\or \lor \vee, \curlyvee, \bigvee

\({\displaystyle \lor ,\lor ,\vee ,\curlyvee ,\bigvee}\)

\and \land \wedge, \curlywedge, \bigwedge

\({\displaystyle \land ,\land ,\wedge ,\curlywedge ,\bigwedge}\)

\bar{q}, \bar{abc}, \overline{q}, \overline{abc},

\lnot \neg, \not\operatorname{R}, \bot, \top

\({\displaystyle {\bar {q}},{\bar {abc}},{\overline {q}},{\overline {abc}},}\)

\({\displaystyle \lnot \neg ,\not \operatorname {R} ,\bot ,\top }\)

\vdash \dashv, \vDash, \Vdash, \models

\({\displaystyle \vdash ,\dashv ,\vDash ,\Vdash ,\models}\)

\Vvdash \nvdash \nVdash \nvDash \nVDash

\({\displaystyle \Vvdash ,\nvdash ,\nVdash ,\nvDash ,\nVDash}\)

\ulcorner \urcorner \llcorner \lrcorner

\({\displaystyle \ulcorner \urcorner \llcorner \lrcorner}\)

箭头

\Rrightarrow, \Lleftarrow

\({\displaystyle \Rrightarrow ,\Lleftarrow}\)

\Rightarrow, \nRightarrow, \Longrightarrow \implies

\({\displaystyle \Rightarrow ,\nRightarrow ,\Longrightarrow ,\implies}\)

\Leftarrow, \nLeftarrow, \Longleftarrow

\({\displaystyle \Leftarrow ,\nLeftarrow ,\Longleftarrow}\)

\Leftrightarrow, \nLeftrightarrow, \Longleftrightarrow \iff

\({\displaystyle \Leftrightarrow ,\nLeftrightarrow ,\Longleftrightarrow \iff}\)

\Uparrow, \Downarrow, \Updownarrow

\({\displaystyle \Uparrow ,\Downarrow ,\Updownarrow}\)

\rightarrow \to, \nrightarrow, \longrightarrow

\({\displaystyle \rightarrow \to ,\nrightarrow ,\longrightarrow}\)

\leftarrow \gets, \nleftarrow, \longleftarrow

\({\displaystyle \leftarrow \gets ,\nleftarrow ,\longleftarrow}\)

\leftrightarrow, \nleftrightarrow, \longleftrightarrow

\({\displaystyle \leftrightarrow ,\nleftrightarrow ,\longleftrightarrow}\)

\uparrow, \downarrow, \updownarrow

\({\displaystyle \uparrow ,\downarrow ,\updownarrow}\)

\nearrow, \swarrow, \nwarrow, \searrow

\({\displaystyle \nearrow ,\swarrow ,\nwarrow ,\searrow}\)

\mapsto, \longmapsto

\({\displaystyle \mapsto ,\longmapsto}\)

\rightharpoonup \rightharpoondown \leftharpoonup \leftharpoondown \upharpoonleft \upharpoonright \downharpoonleft \downharpoonright \rightleftharpoons \leftrightharpoons

\({\displaystyle \rightharpoonup ,\rightharpoondown ,\leftharpoonup ,\leftharpoondown ,\upharpoonleft ,\upharpoonright ,\downharpoonleft ,\downharpoonright ,\rightleftharpoons ,\leftrightharpoons}\)

\curvearrowleft \circlearrowleft \Lsh \upuparrows \rightrightarrows \rightleftarrows \rightarrowtail \looparrowright

\({\displaystyle \curvearrowleft ,\circlearrowleft ,\Lsh ,\upuparrows ,\rightrightarrows ,\rightleftarrows ,\rightarrowtail ,\looparrowright}\)

\curvearrowright \circlearrowright \Rsh \downdownarrows \leftleftarrows \leftrightarrows \leftarrowtail \looparrowleft

\({\displaystyle \curvearrowright ,\circlearrowright ,\Rsh ,\downdownarrows ,\leftleftarrows ,\leftrightarrows ,\leftarrowtail ,\looparrowleft}\)

\hookrightarrow \hookleftarrow \multimap \leftrightsquigarrow \rightsquigarrow \twoheadrightarrow \twoheadleftarrow

\({\displaystyle \hookrightarrow ,\hookleftarrow ,\multimap ,\leftrightsquigarrow ,\rightsquigarrow ,\twoheadrightarrow ,\twoheadleftarrow}\)

特殊符号

省略号:数学公式中常见的省略号有两种,\ldots 表示与文本底线对齐的省略号,\cdots 表示与文本中线对齐的省略号。

\amalg \% \dagger \ddagger \ldots \cdots

\({\displaystyle \amalg \%\dagger \ddagger \ldots \cdots}\)

\smile \frown \wr \triangleleft \triangleright

\({\displaystyle \smile \frown \wr \triangleleft \triangleright}\)

\diamondsuit, \heartsuit, \clubsuit, \spadesuit, \Game, \flat, \natural, \sharp

\({\displaystyle \diamondsuit ,\heartsuit ,\clubsuit ,\spadesuit ,\Game ,\flat ,\natural ,\sharp}\)

未分类

\diagup \diagdown \centerdot \ltimes \rtimes \leftthreetimes \rightthreetimes

\({\displaystyle \diagup ,\diagdown ,\centerdot ,\ltimes ,\rtimes ,\leftthreetimes ,\rightthreetimes}\)

\eqcirc \circeq \triangleq \bumpeq \Bumpeq \doteqdot \risingdotseq \fallingdotseq

\({\displaystyle \eqcirc ,\circeq ,\triangleq ,\bumpeq ,\Bumpeq ,\doteqdot ,\risingdotseq ,\fallingdotseq}\)

\intercal \barwedge \veebar \doublebarwedge \between \pitchfork

\({\displaystyle \intercal ,\barwedge ,\veebar ,\doublebarwedge ,\between ,\pitchfork}\)

\vartriangleleft \ntriangleleft \vartriangleright \ntriangleright

\({\displaystyle \vartriangleleft ,\ntriangleleft ,\vartriangleright ,\ntriangleright}\)

\trianglelefteq \ntrianglelefteq \trianglerighteq \ntrianglerighteq

\({\displaystyle \trianglelefteq ,\ntrianglelefteq ,\trianglerighteq ,\ntrianglerighteq}\)

关于这些符号的更多语义,参阅 TeX Cookbook 的简述。

上标、下标及积分等

功能|语法|效果

^ 表示上标, _ 表示下标。如果上下标的内容多于一个字符,需要用 {} 将这些内容括成一个整体。上下标可以嵌套,也可以同时使用。

上标

a^2

\({\displaystyle a^{2}}\)

下标

a_2

\({\displaystyle a_{2}}\)

组合

a^{2+2}

\({\displaystyle a^{2+2}}\)

a_{i,j}

\({\displaystyle a_{i,j}}\)

结合上下标

x_2^3

\({\displaystyle x_{2}^{3}}\)

前置上下标

{}_1^2\!X_3^4

\({\displaystyle {}_{1}^{2}\!X_{3}^{4}}\)

导数(HTML

x'

\({\displaystyle x'}\)

导数(PNG

x^\prime

\({\displaystyle x^{\prime}}\)

导数(错误

x\prime

\({\displaystyle x\prime}\)

导数点

\dot{x}

\({\displaystyle {\dot {x}}}\)

\ddot{y}

\({\displaystyle {\ddot {y}}}\)

向量

\vec{c}(只有一个字母)

\({\displaystyle {\vec {c}}}\)

\overleftarrow{a b}

\({\displaystyle {\overleftarrow {ab}}}\)

\overrightarrow{c d}

\({\displaystyle {\overrightarrow {cd}}}\)

\overleftrightarrow{a b}

\({\displaystyle {\overleftrightarrow {ab}}}\)

\widehat{e f g}

\({\displaystyle {\widehat {efg}}}\)

上弧

(注: 正确应该用 \overarc,但在这里行不通。要用建议的语法作为解决办法。)(使用 \ overarc 时需要引入 {arcs} 包。)

\overset{\frown} {AB}

\({\displaystyle {\overset {\frown}{AB}}}\)

上划线

\overline{h i j}

\({\displaystyle {\overline {hij}}}\)

下划线

\underline{k l m}

\({\displaystyle {\underline {klm}}}\)

上括号

\overbrace{1+2+\cdots+100}

\({\displaystyle \overbrace {1+2+\cdots +100} }\)

\begin{matrix} 5050 \\ \overbrace{ 1+2+\cdots+100 } \end{matrix}

\({\displaystyle {\begin{matrix}5050\\\overbrace {1+2+\cdots +100} \end{matrix}}}\)

下括号

\underbrace{a+b+\cdots+z}

\({\displaystyle \underbrace {a+b+\cdots +z} }\)

\begin{matrix} \underbrace{ a+b+\cdots+z } \\ 26 \end{matrix}

\({\displaystyle {\begin{matrix}\underbrace {a+b+\cdots +z} \\26\end{matrix}}}\)

求和(累加)

\sum_{k=1}^N k^2

\({\displaystyle \sum _{k=1}^{N}k^{2}}\)

\begin{matrix} \sum_{k=1}^N k^2 \end{matrix}

\({\displaystyle {\begin{matrix}\sum _{k=1}^{N}k^{2}\end{matrix}}}\)

求积(累乘)

\prod_{i=1}^N x_i

\({\displaystyle \prod _{i=1}^{N}x_{i}}\)

\begin{matrix} \prod_{i=1}^N x_i \end{matrix}

\({\displaystyle {\begin{matrix}\prod _{i=1}^{N}x_{i}\end{matrix}}}\)

上积

\coprod_{i=1}^N x_i

\({\displaystyle \coprod _{i=1}^{N}x_{i}}\)

\begin{matrix} \coprod_{i=1}^N x_i \end{matrix}

\({\displaystyle {\begin{matrix}\coprod _{i=1}^{N}x_{i}\end{matrix}}}\)

极限

\lim_{n \to \infty}x_n

\({\displaystyle \lim _{n\to \infty}x_{n}}\)

\begin{matrix} \lim_{n \to \infty}x_n \end{matrix}

\({\displaystyle {\begin{matrix}\lim _{n\to \infty }x_{n}\end{matrix}}}\)

积分

\int_{-N}^{N} e^x\, {\rm d}x

\({\displaystyle \int _{-N}^{N}e^{x}\,{\rm d} x}\)

本例中 \,{\rm d} 部分可省略,但建议加入,能使式子更美观。{\rm d}可以用\mathrm{d}等价替换。

\begin{matrix} \int_{-N}^{N} e^x\, \mathrm{d}x \end{matrix}(矩阵中积分符号变小)

\({\displaystyle {\begin{matrix}\int _{-N}^{N}e^{x}\,\mathrm {d} x\end{matrix}}}\)

双重积分

\iint_{D}^{W} \, \mathrm{d}x\,\mathrm{d}y

\({\displaystyle \iint _{D}^{W}\,\mathrm {d} x\,\mathrm {d} y}\)

三重积分

\iiint_{E}^{V} \, \mathrm{d}x\,\mathrm{d}y\,\mathrm{d}z

\({\displaystyle \iiint _{E}^{V}\,\mathrm {d} x\,\mathrm {d} y\,\mathrm {d} z}\)

闭合的曲线、曲面积分

\oint_{C} x^3\, \mathrm{d}x + 4y^2\, \mathrm{d}y

\({\displaystyle \oint _{C}x^{3}\,\mathrm {d} x+4y^{2}\,\mathrm {d} y}\)

交集

\bigcap_1^{n} p

\({\displaystyle \bigcap _{1}^{n}p}\)

并集

\bigcup_1^{k} p

\({\displaystyle \bigcup _{1}^{k}p}\)

分数

通常使用 \frac {分子} {分母} 命令产生一个分数,分数可嵌套。
便捷情况可直接输入 \frac ab 来快速生成一个 \(\frac ab\)
如果分式很复杂,亦可使用 分子 \over 分母 命令,此时分数仅有一层。

功能|语法|效果

分数

\frac{2}{4}=0.5

\({\displaystyle {\frac {2}{4}}=0.5}\)

小型分数

\tfrac{2}{4} = 0.5

\({\displaystyle {\tfrac {2}{4}}=0.5}\)

连分式(大型嵌套分式)

\cfrac{2}{c + \cfrac{2}{d + \cfrac{2}{4}}} = a

\({\displaystyle {\cfrac {2}{c+{\cfrac {2}{d+{\cfrac {2}{4}}}}}}=a}\)

大型不嵌套分式

\dfrac{2}{4} = 0.5 \qquad \dfrac{2}{c + \dfrac{2}{d + \dfrac{2}{4}}} = a

\({\displaystyle {\dfrac {2}{4}}=0.5\qquad {\dfrac {2}{c+{\dfrac {2}{d+{\dfrac {2}{4}}}}}}=a}\)

二项式系数

\dbinom{n}{r}=\binom{n}{n-r}=\mathrm{C}_n^r=\mathrm{C}_n^{n-r}

\({\displaystyle {\dbinom {n}{r}}={\binom {n}{n-r}}=\mathrm {C} _{n}^{r}=\mathrm {C} _{n}^{n-r}}\)

小型二项式系数

\tbinom{n}{r}=\tbinom{n}{n-r}=\mathrm{C}_n^r=\mathrm{C}_n^{n-r}

\({\displaystyle {\tbinom {n}{r}}={\tbinom {n}{n-r}}=\mathrm {C} _{n}^{r}=\mathrm {C} _{n}^{n-r}}\)

大型二项式系数

\binom{n}{r}=\dbinom{n}{n-r}=\mathrm{C}_n^r=\mathrm{C}_n^{n-r}

\({\displaystyle {\binom {n}{r}}={\dbinom {n}{n-r}}=\mathrm {C} _{n}^{r}=\mathrm {C} _{n}^{n-r}}\)

在以e为底的指数函数、极限和积分中尽量不要使用 \frac 符号:它会使整段函数看起来很怪,而且可能产生歧义。也正是因此它在专业数学排版中几乎从不出现。
横着写这些分式,中间使用斜线间隔 / (用斜线代替分数线)。

  • 例子:
\begin{array}{cc}
\mathrm{Bad} & \mathrm{Better} \\
\hline \\
e^{i\frac{\pi}2} \quad e^{\frac{i\pi}2}& e^{i\pi/2} \\
\int_{-\frac\pi2}^\frac\pi2 \sin x\,dx & \int_{-\pi/2}^{\pi/2}\sin x\,dx \\
\end{array}
  • 显示:

\[\begin{array}{cc} \mathrm{Bad} & \mathrm{Better} \\ \hline \\ e^{i\frac{\pi}2} \quad e^{\frac{i\pi}2}& e^{i\pi/2} \\ \int_{-\frac\pi2}^\frac\pi2 \sin x\,dx & \int_{-\pi/2}^{\pi/2}\sin x\,dx \\ \end{array} \]

矩阵、条件表达式、方程组

语法:

\begin{类型}
公式内容
\end{类型}

类型可以是:矩阵 matrix pmatrix bmatrix Bmatrix vmatrix Vmatrix、条件表达式 cases、多行对齐方程式 aligned、数组 array

在公式内容中:在每一行中插入 & 来指定需要对齐的内容,在每行结尾处使用 \\ 换行

无框矩阵

在开头使用 begin{matrix},在结尾使用 end{matrix},在中间插入矩阵元素,每个元素之间插入 & ,并在每行结尾处使用 \\

\begin{matrix}
x & y \\
z & v
\end{matrix}

\({\displaystyle {\begin{matrix}x&y\\z&v\end{matrix}}}\)

有框矩阵

在开头将 matrix 替换为 pmatrix bmatrix Bmatrix vmatrix Vmatrix

\begin{vmatrix}
x & y \\
z & v
\end{vmatrix}

\({\displaystyle {\begin{vmatrix}x&y\\z&v\end{vmatrix}}}\)

\begin{Vmatrix}
x & y \\
z & v
\end{Vmatrix}

\({\displaystyle {\begin{Vmatrix}x&y\\z&v\end{Vmatrix}}}\)

使用 \cdots \(\cdots\) , \ddots \(\ddots\) , \vdots \(\vdots\) 来输入省略符号

\begin{bmatrix}
0      & \cdots & 0      \\
\vdots & \ddots & \vdots \\
0      & \cdots & 0
\end{bmatrix}

\({\displaystyle {\begin{bmatrix}0&\cdots &0\\\vdots &\ddots &\vdots \\0&\cdots &0\end{bmatrix}}}\)

\begin{Bmatrix}
x & y \\
z & v
\end{Bmatrix}

\({\displaystyle {\begin{Bmatrix}x&y\\z&v\end{Bmatrix}}}\)

\begin{pmatrix}
x & y \\
z & v
\end{pmatrix}

\({\displaystyle {\begin{pmatrix}x&y\\z&v\end{pmatrix}}}\)

条件表达式

f(n) =
\begin{cases} 
n/2,  & \text{if }n\text{ is even} \\
3n+1, & \text{if }n\text{ is odd}
\end{cases}

\({\displaystyle f(n)={\begin{cases}n/2,&{\text{if }}n{\text{ is even}}\\3n+1,&{\text{if }}n{\text{ is odd}}\end{cases}}}\)

多行等式、同余式

人们经常想要一列整齐且居中的方程式序列。使用 \begin{aligned}…\end{aligned}

\begin{aligned}
f(x) & = (m+n)^2 \\
     & = m^2+2mn+n^2 \\
\end{aligned}

\({\displaystyle {\begin{aligned}f(x)&=(m+n)^{2}\\&=m^{2}+2mn+n^{2}\\\end{aligned}}}\)

begin{aligned}
3^{6n+3}+4^{6n+3} 
& \equiv (3^3)^{2n+1}+(4^3)^{2n+1}\\  
& \equiv 27^{2n+1}+64^{2n+1}\\  
& \equiv 27^{2n+1}+(-27)^{2n+1}\\ 
& \equiv 27^{2n+1}-27^{2n+1}\\
& \equiv 0 \pmod{91}\\
\end{aligned}

\({\displaystyle {\begin{aligned}3^{6n+3}+4^{6n+3}&\equiv (3^{3})^{2n+1}+(4^{3})^{2n+1}\\&\equiv 27^{2n+1}+64^{2n+1}\\&\equiv 27^{2n+1}+(-27)^{2n+1}\\&\equiv 27^{2n+1}-27^{2n+1}\\&\equiv 0{\pmod {91}}\\\end{aligned}}}\)

\begin{alignedat}{3}
f(x) & = (m-n)^2 \\
f(x) & = (-m+n)^2 \\
     & = m^2-2mn+n^2 \\
\end{alignedat}

\({\displaystyle {\begin{alignedat}{3}f(x)&=(m-n)^{2}\\f(x)&=(-m+n)^{2}\\&=m^{2}-2mn+n^{2}\\\end{alignedat}}}\)

方程组

\begin{cases}
3x + 5y +  z \\
7x - 2y + 4z \\
-6x + 3y + 2z
\end{cases}

\[{\displaystyle {\begin{cases}3x+5y+z\\7x-2y+4z\\-6x+3y+2z\end{cases}}} \]

\left\{\begin{aligned}
3x + 5y +  z \\
7x - 2y + 4z \\
-6x + 3y + 2z
\end{aligned}\right.

\[\left\{\begin{aligned} 3x + 5y + z \\ 7x - 2y + 4z \\ -6x + 3y + 2z \end{aligned}\right. \]

数组与表格

通常,一个格式化后的表格比单纯的文字或排版后的文字更具有可读性。数组和表格均以 \begin{array} 开头,并在其后定义列数及每一列的文本对齐属性,c l r 分别代表居中、左对齐及右对齐。若需要插入垂直分割线,在定义式中插入 | ,若要插入水平分割线,在下一行输入前插入 \hline 。与矩阵相似,每行元素间均须要插入 & ,每行元素以 \\ 结尾,最后以 \end{array} 结束数组。

  • 例子:
\begin{array}{c|lcr}
n & \text{左对齐} & \text{居中对齐} & \text{右对齐} \\
\hline
1 & 0.24 & 1 & 125 \\
2 & -1 & 189 & -8 \\
3 & -20 & 2000 & 1+10i
\end{array}
  • 显示:

\[\begin{array}{c|lcr} n & \text{左对齐} & \text{居中对齐} & \text{右对齐} \\ \hline 1 & 0.24 & 1 & 125 \\ 2 & -1 & 189 & -8 \\ 3 & -20 & 2000 & 1+10i \end{array} \]

  • 例子:
\begin{array}{lcl}
z        & = & a \\
f(x,y,z) & = & x + y + z 
\end{array}
  • 显示:

\({\displaystyle {\begin{array}{lcl}z&=&a\\f(x,y,z)&=&x+y+z\end{array}}}\)

  • 例子:
\begin{array}{lcr}
z        & = & a \\
f(x,y,z) & = & x + y + z    
\end{array}
  • 显示:

\({\displaystyle {\begin{array}{lcr}z&=&a\\f(x,y,z)&=&x+y+z\end{array}}}\)

  • 例子:
\begin{array}{ccc}
a & b & S \\
\hline
0&0&1\\
0&1&1\\
1&0&1\\
1&1&0\\
\end{array}
  • 显示:

\[{\displaystyle {\begin{array}{ccc}a&b&S\\\hline 0&0&1\\0&1&1\\1&0&1\\1&1&0\\\end{array}}} \]

嵌套数组或表格

多个数组/表格可 互相嵌套 并组成一组数组/一组表格。
使用嵌套前必须声明 $$ 符号。

  • 例子:
% outer vertical array of arrays 外层垂直表格
\begin{array}{c}
    % inner horizontal array of arrays 内层水平表格
    \begin{array}{cc}
        % inner array of minimum values 内层"最小值"数组
        \begin{array}{c|cccc}
        \text{min} & 0 & 1 & 2 & 3\\
        \hline
        0 & 0 & 0 & 0 & 0\\
        1 & 0 & 1 & 1 & 1\\
        2 & 0 & 1 & 2 & 2\\
        3 & 0 & 1 & 2 & 3
        \end{array}
    &
        % inner array of maximum values 内层"最大值"数组
        \begin{array}{c|cccc}
        \text{max}&0&1&2&3\\
        \hline
        0 & 0 & 1 & 2 & 3\\
        1 & 1 & 1 & 2 & 3\\
        2 & 2 & 2 & 2 & 3\\
        3 & 3 & 3 & 3 & 3
        \end{array}
    \end{array}
    % 内层第一行表格组结束
    \\
    % inner array of delta values 内层第二行Delta值数组
        \begin{array}{c|cccc}
        \Delta&0&1&2&3\\
        \hline
        0 & 0 & 1 & 2 & 3\\
        1 & 1 & 0 & 1 & 2\\
        2 & 2 & 1 & 0 & 1\\
        3 & 3 & 2 & 1 & 0
        \end{array}
        % 内层第二行表格组结束
\end{array}
  • 显示:

\[% outer vertical array of arrays 外层垂直表格 \begin{array}{c} % inner horizontal array of arrays 内层水平表格 \begin{array}{cc} % inner array of minimum values 内层"最小值"数组 \begin{array}{c|cccc} \text{min} & 0 & 1 & 2 & 3\\ \hline 0 & 0 & 0 & 0 & 0\\ 1 & 0 & 1 & 1 & 1\\ 2 & 0 & 1 & 2 & 2\\ 3 & 0 & 1 & 2 & 3 \end{array} & % inner array of maximum values 内层"最大值"数组 \begin{array}{c|cccc} \text{max}&0&1&2&3\\ \hline 0 & 0 & 1 & 2 & 3\\ 1 & 1 & 1 & 2 & 3\\ 2 & 2 & 2 & 2 & 3\\ 3 & 3 & 3 & 3 & 3 \end{array} \end{array} % 内层第一行表格组结束 \\ % inner array of delta values 内层第二行Delta值数组 \begin{array}{c|cccc} \Delta&0&1&2&3\\ \hline 0 & 0 & 1 & 2 & 3\\ 1 & 1 & 0 & 1 & 2\\ 2 & 2 & 1 & 0 & 1\\ 3 & 3 & 2 & 1 & 0 \end{array} % 内层第二行表格组结束 \end{array} \]

用数组实现带分割符号的矩阵

  • 例子:
$$
\left[
    \begin{array}{cc|c}
      1&2&3\\
      4&5&6
    \end{array}
\right]
$$
  • 显示:

\[\left[ \begin{array}{cc|c} 1&2&3\\ 4&5&6 \end{array} \right] \]

其中 cc|c 代表在一个三列矩阵中的第二和第三列之间插入分割线。

字体

希腊字母

输入 \小写希腊字母英文全称\首字母大写希腊字母英文全称 来分别输入小写和大写希腊字母。

\Alpha \Beta \Gamma \Delta \Epsilon \Zeta \Eta \Theta

\({\displaystyle \mathrm {A} \mathrm {B} \Gamma \Delta \mathrm {E} \mathrm {Z} \mathrm {H} \Theta }\)

\Iota \Kappa \Lambda \Mu \Nu \Xi \Omicron \Pi

\({\displaystyle \mathrm {I} \mathrm {K} \Lambda \mathrm {M} \mathrm {N} \mathrm {O} \Xi \Pi }\)

\Rho \Sigma \Tau \Upsilon \Phi \Chi \Psi \Omega

\({\displaystyle \mathrm {P} \Sigma \mathrm {T} \Upsilon \Phi \mathrm {X} \Psi \Omega }\)

\alpha \beta \gamma \delta \epsilon \zeta \eta \theta

\({\displaystyle \alpha \beta \gamma \delta \epsilon \zeta \eta \theta}\)

\iota \kappa \lambda \mu \nu \omicron \xi \pi

\({\displaystyle \iota \kappa \lambda \mu \nu \mathrm {o} \xi \pi }\)

\rho \sigma \tau \upsilon \phi \chi \psi \omega

\({\displaystyle \rho \sigma \tau \upsilon \phi \chi \psi \omega}\)

部分字母有变量专用形式,以 \var- 开头。

\varepsilon \digamma \varkappa \varpi

\({\displaystyle \varepsilon \digamma \varkappa \varpi}\)

\varrho \varsigma \vartheta \varphi

\({\displaystyle \varrho \varsigma \vartheta \varphi}\)

希伯来符号

\aleph \beth \gimel \daleth

\({\displaystyle \aleph \beth \gimel \daleth}\)

部分字体的简称

若要对公式的某一部分字符进行字体转换,可以用 {\字体 {需转换的部分字符}} 命令,其中 \字体 部分可以参照下表选择合适的字体。一般情况下,公式默认为意大利体 \(italic\)

|输入|说明|显示|输入|说明|显示|
|:--😐:--😐:--😐:--😐:--😐:--😐:--😐
|\rm|罗马体|\(\rm{Sample}\)|\cal|花体|\(\cal{SAMPLE}\)|
|\it|意大利体|\(\it{Sample}\)|\Bbb|黑板粗体|\(\Bbb{SAMPLE}\)|
|\bf|粗体|\(\bf{Sample}\)|\mit|数学斜体|\(\mit{SAMPLE}\)|
|\sf|等线体|\(\sf{Sample}\)|\scr|手写体|\(\scr{SAMPLE}\)|
|\tt|打字机体|\(\tt{Sample}\)|\frak|旧德式字体|\(\frak{Sample}\)|

所有字体

黑板报粗体

\mathbb{ABCDEFGHI}

\({\displaystyle \mathbb {ABCDEFGHI} }\)

\mathbb{JKLMNOPQR}

\({\displaystyle \mathbb {JKLMNOPQR} }\)

\mathbb{STUVWXYZ}

\({\displaystyle \mathbb {STUVWXYZ} }\)

粗体

\mathbf{ABCDEFGHI}

\({\displaystyle \mathbf {ABCDEFGHI} }\)

\mathbf{JKLMNOPQR}

\({\displaystyle \mathbf {JKLMNOPQR} }\)

\mathbf{STUVWXYZ}

\({\displaystyle \mathbf {STUVWXYZ} }\)

\mathbf{abcdefghijklm}

\({\displaystyle \mathbf {abcdefghijklm} }\)

\mathbf{nopqrstuvwxyz}

\({\displaystyle \mathbf {nopqrstuvwxyz} }\)

\mathbf{0123456789}

\({\displaystyle \mathbf {0123456789} }\)

粗体希腊字母

\boldsymbol{\Alpha\Beta\Gamma\Delta\Epsilon\Zeta\Eta\Theta}

\({\displaystyle {\boldsymbol {\mathrm {A} \mathrm {B} \Gamma \Delta \mathrm {E} \mathrm {Z} \mathrm {H} \Theta }}}\)

\boldsymbol{\Iota\Kappa\Lambda\Mu\Nu\Xi\Pi\Rho}

\({\displaystyle {\boldsymbol {\mathrm {I} \mathrm {K} \Lambda \mathrm {M} \mathrm {N} \Xi \Pi \mathrm {P} }}}\)

\boldsymbol{\Sigma\Tau\Upsilon\Phi\Chi\Psi\Omega}

\({\displaystyle {\boldsymbol {\Sigma \mathrm {T} \Upsilon \Phi \mathrm {X} \Psi \Omega }}}\)

\boldsymbol{\alpha\beta\gamma\delta\epsilon\zeta\eta\theta}

\({\displaystyle {\boldsymbol {\alpha \beta \gamma \delta \epsilon \zeta \eta \theta}}}\)

\boldsymbol{\iota\kappa\lambda\mu\nu\xi\pi\rho}

\({\displaystyle {\boldsymbol {\iota \kappa \lambda \mu \nu \xi \pi \rho}}}\)

\boldsymbol{\sigma\tau\upsilon\phi\chi\psi\omega}

\({\displaystyle {\boldsymbol {\sigma \tau \upsilon \phi \chi \psi \omega}}}\)

\boldsymbol{\varepsilon\digamma\varkappa\varpi}

\({\displaystyle {\boldsymbol {\varepsilon \digamma \varkappa \varpi}}}\)

\boldsymbol{\varrho\varsigma\vartheta\varphi}

\({\displaystyle {\boldsymbol {\varrho \varsigma \vartheta \varphi}}}\)

斜体(拉丁字母默认)

\mathit{0123456789}

\({\displaystyle {\mathit {0123456789}}}\)

斜体希腊字母(小写字母默认)

\mathit{\Alpha\Beta\Gamma\Delta\Epsilon\Zeta\Eta\Theta}

\({\displaystyle {\mathit {\mathrm {A} \mathrm {B} \Gamma \Delta \mathrm {E} \mathrm {Z} \mathrm {H} \Theta }}}\)

\mathit{\Iota\Kappa\Lambda\Mu\Nu\Xi\Pi\Rho}

\({\displaystyle {\mathit {\mathrm {I} \mathrm {K} \Lambda \mathrm {M} \mathrm {N} \Xi \Pi \mathrm {P} }}}\)

\mathit{\Sigma\Tau\Upsilon\Phi\Chi\Psi\Omega}

\({\displaystyle {\mathit {\Sigma \mathrm {T} \Upsilon \Phi \mathrm {X} \Psi \Omega }}}\)

罗马体

\mathrm{ABCDEFGHI}

\({\displaystyle \mathrm {ABCDEFGHI} }\)

\mathrm{JKLMNOPQR}

\({\displaystyle \mathrm {JKLMNOPQR} }\)

\mathrm{STUVWXYZ}

\({\displaystyle \mathrm {STUVWXYZ} }\)

\mathrm{abcdefghijklm}

\({\displaystyle \mathrm {abcdefghijklm} }\)

\mathrm{nopqrstuvwxyz}

\({\displaystyle \mathrm {nopqrstuvwxyz} }\)

\mathrm{0123456789}

\({\displaystyle \mathrm {0123456789} }\)

无衬线体

\mathsf{ABCDEFGHI}

\({\displaystyle {\mathsf {ABCDEFGHI}}}\)

\mathsf{JKLMNOPQR}

\({\displaystyle {\mathsf {JKLMNOPQR}}}\)

\mathsf{STUVWXYZ}

\({\displaystyle {\mathsf {STUVWXYZ}}}\)

\mathsf{abcdefghijklm}

\({\displaystyle {\mathsf {abcdefghijklm}}}\)

\mathsf{nopqrstuvwxyz}

\({\displaystyle {\mathsf {nopqrstuvwxyz}}}\)

\mathsf{0123456789}

\({\displaystyle {\mathsf {0123456789}}}\)

无衬线体希腊字母(仅大写)

\mathsf{\Alpha \Beta \Gamma \Delta \Epsilon \Zeta \Eta \Theta}

\({\displaystyle {\mathsf {\mathrm {A} \mathrm {B} \Gamma \Delta \mathrm {E} \mathrm {Z} \mathrm {H} \Theta }}}\)

\mathsf{\Iota \Kappa \Lambda \Mu \Nu \Xi \Pi \Rho}

\({\displaystyle {\mathsf {\mathrm {I} \mathrm {K} \Lambda \mathrm {M} \mathrm {N} \Xi \Pi \mathrm {P} }}}\)

\mathsf{\Sigma \Tau \Upsilon \Phi \Chi \Psi \Omega}

\({\displaystyle {\mathsf {\Sigma \mathrm {T} \Upsilon \Phi \mathrm {X} \Psi \Omega }}}\)

手写体 / 花体

\mathcal{ABCDEFGHI}

\({\displaystyle {\mathcal {ABCDEFGHI}}}\)

\mathcal{JKLMNOPQR}

\({\displaystyle {\mathcal {JKLMNOPQR}}}\)

\mathcal{STUVWXYZ}

\({\displaystyle {\mathcal {STUVWXYZ}}}\)

Fraktur 体

\mathfrak{ABCDEFGHI}

\({\displaystyle {\mathfrak {ABCDEFGHI}}}\)

\mathfrak{JKLMNOPQR}

\({\displaystyle {\mathfrak {JKLMNOPQR}}}\)

\mathfrak{STUVWXYZ}

\({\displaystyle {\mathfrak {STUVWXYZ}}}\)

\mathfrak{abcdefghijklm}

\({\displaystyle {\mathfrak {abcdefghijklm}}}\)

\mathfrak{nopqrstuvwxyz}

\({\displaystyle {\mathfrak {nopqrstuvwxyz}}}\)

\mathfrak{0123456789}

\({\displaystyle {\mathfrak {0123456789}}}\)

小型手写体

{\scriptstyle\text{abcdefghijklm}}

\({\displaystyle {\scriptstyle {\text{abcdefghijklm}}}}\)

混合字体

特征|语法|渲染效果

斜体字符(忽略空格)

x y z

\({\displaystyle xyz}\)

非斜体字符

\text{x y z}

\({\displaystyle {\text{x y z}}}\)

混合斜体(差)

\text{if} n \text{is even}

\({\displaystyle {\text{if}}n{\text{is even}}}\)

混合斜体(好)

\text{if }n\text{ is even}

\({\displaystyle {\text{if }}n{\text{ is even}}}\)

混合斜体(替代品:~ 或者 \ 强制空格)

\text{if}~n\ \text{is even}

\({\displaystyle {\text{if}}~n\ {\text{is even}}}\)

注释文本

使用 \text {文字} 来添加注释文本(注释文本不会被识别为公式,不用斜体显示)。\text {文字}中仍可以使用 $公式$ 插入其它公式。

  • 例子:
f(n)= \begin{cases}
n/2, & \text {if $n$ is even} \\
3n+1, &\text{if $n$ is odd}
\end{cases} 
  • 显示:

\[f(n)= \begin{cases} n/2, & \text {if}\ n\ \text{is even} \\ 3n+1, & \text {if}\ n\ \text{is odd} \end{cases} \]

括号

()[]| 表示符号本身,使用 \{\} 来表示 {}

功能|语法|显示

短括号

\frac{1}{2}

\({\displaystyle ({\frac {1}{2}})}\)

长括号

\left(\frac{1}{2} \right

\({\displaystyle \left({\frac {1}{2}}\right)}\)

使用 \left\right 来创建自动匹配高度的 (圆括号),[方括号] 和 {花括号} 。

功能|语法|显示

圆括号,小括号

\left( \frac{a}{b} \right)

\({\displaystyle \left({\frac {a}{b}}\right)}\)

方括号,中括号

\left[ \frac{a}{b} \right]

\({\displaystyle \left[{\frac {a}{b}}\right]}\)

花括号,大括号

\left{ \frac{a}{b} \right}

\({\displaystyle \left\{{\frac {a}{b}}\right\}}\)

角括号

\left \langle \frac{a}{b} \right \rangle

\({\displaystyle \left\langle {\frac {a}{b}}\right\rangle }\)

单竖线,绝对值

\left| \frac{a}{b} \right|

\({\displaystyle \left| \frac{a}{b} \right|}\)

双竖线,范

\left \| \frac{a}{b} \right \|

\({\displaystyle \left\|{\frac {a}{b}}\right\|}\)

取整函数

\left \lfloor \frac{a}{b} \right \rfloor

\({\displaystyle \left\lfloor {\frac {a}{b}}\right\rfloor }\)

取顶函数

\left \lceil \frac{c}{d} \right \rceil

\({\displaystyle \left\lceil {\frac {c}{d}}\right\rceil }\)

斜线与反斜线

\left / \frac{a}{b} \right \backslash

\({\displaystyle \left/{\frac {a}{b}}\right\backslash }\)

上下箭头

\left \uparrow \frac{a}{b} \right \downarrow

\({\displaystyle \left\uparrow {\frac {a}{b}}\right\downarrow }\)

\left \Uparrow \frac{a}{b} \right \Downarrow

\({\displaystyle \left\Uparrow {\frac {a}{b}}\right\Downarrow }\)

\left \updownarrow \frac{a}{b} \right \Updownarrow

\({\displaystyle \left\updownarrow {\frac {a}{b}}\right\Updownarrow }\)

混合括号

\left[ 0,1 \right)

\({\displaystyle \left[0,1\right)}\)

\left \langle \psi \right |

\(\left \langle \psi \right |\)

如果括号只有一边,要用 \left.\right. 匹配另一边。

单左括号

\left \{\frac{a}{b} \right.

\({\displaystyle \left\{{\frac {a}{b}}\right.}\)

单右括号

\left. \frac{a}{b} \right \}

\({\displaystyle \left.{\frac {a}{b}}\right\}}\)

备注:

  • 可以使用 \big, \Big, \bigg, \Bigg 控制括号的大小,比如代码

    \Bigg ( \bigg [ \Big \{ \big \langle \left | \| \frac{a}{b} \| \right | \big \rangle \Big \} \bigg ] \Bigg )

    显示︰

    \[\Bigg ( \bigg [ \Big \{ \big \langle \left | \| \frac{a}{b} \| \right | \big \rangle \Big \} \bigg ] \Bigg ) \]

空格

注意 TeX 能够自动处理大多数的空格,但是您有时候需要自己来控制。

功能|语法|显示|宽度

2 个 quad 空格

\alpha\qquad\beta

\({\displaystyle \alpha \qquad \beta}\)

\({\displaystyle mm}\)

quad 空格

\alpha\quad\beta

\({\displaystyle \alpha \quad \beta}\)

\({\displaystyle m}\)

大空格

\alpha\ \beta

\({\displaystyle \alpha \ \beta}\)

\({\displaystyle {\frac{m}{3}}}\)

中等空格

\alpha\;\beta

\({\displaystyle \alpha \;\beta}\)

\({\displaystyle {\frac {2m}{7}}}\)

小空格

\alpha\,\beta

\({\displaystyle \alpha \,\beta}\)

\({\displaystyle {\frac {m}{6}}}\)

没有空格

\alpha\beta

\({\displaystyle \alpha \beta }\)

\({\displaystyle 0}\)

紧贴

\alpha\!\beta

\({\displaystyle \alpha \!\beta}\)

\({\displaystyle -{\frac {m}{6}}}\)

颜色

Cmd Markdown 公式指导手册里是这样写的:

使用 \color{颜色}{文字} 来更改特定的文字颜色。
更改文字颜色 需要浏览器支持 ,如果浏览器不知道你所需的颜色,那么文字将被渲染为黑色。

对于较旧的浏览器(HTML4与CSS2),以下颜色是被支持的:

输入 显示 输入 显示
black \(\color{black}{text}\) grey \(\color{grey}{text}\)
silver \(\color{silver}{text}\) white \(\color{white}{text}\)
maroon \(\color{maroon}{text}\) red \(\color{red}{text}\)
yellow \(\color{yellow}{text}\) lime \(\color{lime}{text}\)
olive \(\color{olive}{text}\) green \(\color{green}{text}\)
teal \(\color{teal}{text}\) auqa \(\color{auqa}{text}\)
blue \(\color{blue}{text}\) navy \(\color{navy}{text}\)
purple \(\color{purple}{text}\) fuchsia \(\color{fuchsia}{text}\)

对于较新的浏览器(HTML5与CSS3),额外的124种颜色将被支持:

输入 \color {#rgb} {text} 来自定义更多的颜色,其中 #rgbr g b 可输入 0-9a-f 来表示红色、绿色和蓝色的纯度(饱和度)。

  • 例子:
\begin{array}{|rrrrrrrr|}\hline
\verb+#000+ & \color{#000}{text} & & &
\verb+#00F+ & \color{#00F}{text} & & \\
& & \verb+#0F0+ & \color{#0F0}{text} &
& & \verb+#0FF+ & \color{#0FF}{text}\\
\verb+#F00+ & \color{#F00}{text} & & &
\verb+#F0F+ & \color{#F0F}{text} & & \\
& & \verb+#FF0+ & \color{#FF0}{text} &
& & \verb+#FFF+ & \color{#FFF}{text}\\
\hline
\end{array}
  • 显示:

\[\begin{array}{|rrrrrrrr|}\hline \verb+#000+ & \color{#000}{text} & & & \verb+#00F+ & \color{#00F}{text} & & \\ & & \verb+#0F0+ & \color{#0F0}{text} & & & \verb+#0FF+ & \color{#0FF}{text}\\ \verb+#F00+ & \color{#F00}{text} & & & \verb+#F0F+ & \color{#F0F}{text} & & \\ & & \verb+#FF0+ & \color{#FF0}{text} & & & \verb+#FFF+ & \color{#FFF}{text}\\ \hline \end{array} \]

  • 例子:
\begin{array}{|rrrrrrrr|}
\hline
\verb+#000+ & \color{#000}{text} & \verb+#005+ & \color{#005}{text} & \verb+#00A+ & \color{#00A}{text} & \verb+#00F+ & \color{#00F}{text}  \\
\verb+#500+ & \color{#500}{text} & \verb+#505+ & \color{#505}{text} & \verb+#50A+ & \color{#50A}{text} & \verb+#50F+ & \color{#50F}{text}  \\
\verb+#A00+ & \color{#A00}{text} & \verb+#A05+ & \color{#A05}{text} & \verb+#A0A+ & \color{#A0A}{text} & \verb+#A0F+ & \color{#A0F}{text}  \\
\verb+#F00+ & \color{#F00}{text} & \verb+#F05+ & \color{#F05}{text} & \verb+#F0A+ & \color{#F0A}{text} & \verb+#F0F+ & \color{#F0F}{text}  \\
\hline
\verb+#080+ & \color{#080}{text} & \verb+#085+ & \color{#085}{text} & \verb+#08A+ & \color{#08A}{text} & \verb+#08F+ & \color{#08F}{text}  \\
\verb+#580+ & \color{#580}{text} & \verb+#585+ & \color{#585}{text} & \verb+#58A+ & \color{#58A}{text} & \verb+#58F+ & \color{#58F}{text}  \\
\verb+#A80+ & \color{#A80}{text} & \verb+#A85+ & \color{#A85}{text} & \verb+#A8A+ & \color{#A8A}{text} & \verb+#A8F+ & \color{#A8F}{text}  \\
\verb+#F80+ & \color{#F80}{text} & \verb+#F85+ & \color{#F85}{text} & \verb+#F8A+ & \color{#F8A}{text} & \verb+#F8F+ & \color{#F8F}{text}  \\
\hline
\verb+#0F0+ & \color{#0F0}{text} & \verb+#0F5+ & \color{#0F5}{text} & \verb+#0FA+ & \color{#0FA}{text} & \verb+#0FF+ & \color{#0FF}{text}  \\
\verb+#5F0+ & \color{#5F0}{text} & \verb+#5F5+ & \color{#5F5}{text} & \verb+#5FA+ & \color{#5FA}{text} & \verb+#5FF+ & \color{#5FF}{text}  \\
\verb+#AF0+ & \color{#AF0}{text} & \verb+#AF5+ & \color{#AF5}{text} & \verb+#AFA+ & \color{#AFA}{text} & \verb+#AFF+ & \color{#AFF}{text}  \\
\verb+#FF0+ & \color{#FF0}{text} & \verb+#FF5+ & \color{#FF5}{text} & \verb+#FFA+ & \color{#FFA}{text} & \verb+#FFF+ & \color{#FFF}{text}  \\
\hline
\end{array}
  • 显示:

\[\begin{array}{|rrrrrrrr|} \hline \verb+#000+ & \color{#000}{text} & \verb+#005+ & \color{#005}{text} & \verb+#00A+ & \color{#00A}{text} & \verb+#00F+ & \color{#00F}{text} \\ \verb+#500+ & \color{#500}{text} & \verb+#505+ & \color{#505}{text} & \verb+#50A+ & \color{#50A}{text} & \verb+#50F+ & \color{#50F}{text} \\ \verb+#A00+ & \color{#A00}{text} & \verb+#A05+ & \color{#A05}{text} & \verb+#A0A+ & \color{#A0A}{text} & \verb+#A0F+ & \color{#A0F}{text} \\ \verb+#F00+ & \color{#F00}{text} & \verb+#F05+ & \color{#F05}{text} & \verb+#F0A+ & \color{#F0A}{text} & \verb+#F0F+ & \color{#F0F}{text} \\ \hline \verb+#080+ & \color{#080}{text} & \verb+#085+ & \color{#085}{text} & \verb+#08A+ & \color{#08A}{text} & \verb+#08F+ & \color{#08F}{text} \\ \verb+#580+ & \color{#580}{text} & \verb+#585+ & \color{#585}{text} & \verb+#58A+ & \color{#58A}{text} & \verb+#58F+ & \color{#58F}{text} \\ \verb+#A80+ & \color{#A80}{text} & \verb+#A85+ & \color{#A85}{text} & \verb+#A8A+ & \color{#A8A}{text} & \verb+#A8F+ & \color{#A8F}{text} \\ \verb+#F80+ & \color{#F80}{text} & \verb+#F85+ & \color{#F85}{text} & \verb+#F8A+ & \color{#F8A}{text} & \verb+#F8F+ & \color{#F8F}{text} \\ \hline \verb+#0F0+ & \color{#0F0}{text} & \verb+#0F5+ & \color{#0F5}{text} & \verb+#0FA+ & \color{#0FA}{text} & \verb+#0FF+ & \color{#0FF}{text} \\ \verb+#5F0+ & \color{#5F0}{text} & \verb+#5F5+ & \color{#5F5}{text} & \verb+#5FA+ & \color{#5FA}{text} & \verb+#5FF+ & \color{#5FF}{text} \\ \verb+#AF0+ & \color{#AF0}{text} & \verb+#AF5+ & \color{#AF5}{text} & \verb+#AFA+ & \color{#AFA}{text} & \verb+#AFF+ & \color{#AFF}{text} \\ \verb+#FF0+ & \color{#FF0}{text} & \verb+#FF5+ & \color{#FF5}{text} & \verb+#FFA+ & \color{#FFA}{text} & \verb+#FFF+ & \color{#FFF}{text} \\ \hline \end{array} \]

维基百科的数学公式教程里是这样写的:

语法:{\color{颜色}表达式}

作者实测:在部分浏览器中,上面的语法可能是错误的(只将表达式的第一个字符着色),\color{颜色}{文字}的语法才是正确的。例如:

{\color{Red}abc}显示\({\color{Red}abc}\)
\color{Red}{abc}显示\(\color{Red}{abc}\)

支持色调表:

\({\displaystyle \color {Apricot}{\text{Apricot}}}\)

\({\displaystyle \color {Aquamarine}{\text{Aquamarine}}}\)

\({\displaystyle \color {Bittersweet}{\text{Bittersweet}}}\)

\({\displaystyle \color {Black}{\text{Black}}}\)

\({\displaystyle \color {Blue}{\text{Blue}}}\)

\({\displaystyle \color {BlueGreen}{\text{BlueGreen}}}\)

\({\displaystyle \color {BlueViolet}{\text{BlueViolet}}}\)

\({\displaystyle \color {BrickRed}{\text{BrickRed}}}\)

\({\displaystyle \color {Brown}{\text{Brown}}}\)

\({\displaystyle \color {BurntOrange}{\text{BurntOrange}}}\)

\({\displaystyle \color {CadetBlue}{\text{CadetBlue}}}\)

\({\displaystyle \color {CarnationPink}{\text{CarnationPink}}}\)

\({\displaystyle \color {Cerulean}{\text{Cerulean}}}\)

\({\displaystyle \color {CornflowerBlue}{\text{CornflowerBlue}}}\)

\({\displaystyle \color {Cyan}{\text{Cyan}}}\)

\({\displaystyle \color {Dandelion}{\text{Dandelion}}}\)

\({\displaystyle \color {DarkOrchid}{\text{DarkOrchid}}}\)

\({\displaystyle \color {Emerald}{\text{Emerald}}}\)

\({\displaystyle \color {ForestGreen}{\text{ForestGreen}}}\)

\({\displaystyle \color {Fuchsia}{\text{Fuchsia}}}\)

\({\displaystyle \color {Goldenrod}{\text{Goldenrod}}}\)

\({\displaystyle \color {Gray}{\text{Gray}}}\)

\({\displaystyle \color {Green}{\text{Green}}}\)

\({\displaystyle \color {GreenYellow}{\text{GreenYellow}}}\)

\({\displaystyle \color {JungleGreen}{\text{JungleGreen}}}\)

\({\displaystyle \color {Lavender}{\text{Lavender}}}\)

\({\displaystyle \color {LimeGreen}{\text{LimeGreen}}}\)

\({\displaystyle \color {Magenta}{\text{Magenta}}}\)

\({\displaystyle \color {Mahogany}{\text{Mahogany}}}\)

\({\displaystyle \color {Maroon}{\text{Maroon}}}\)

\({\displaystyle \color {Melon}{\text{Melon}}}\)

\({\displaystyle \color {MidnightBlue}{\text{MidnightBlue}}}\)

\({\displaystyle \color {Mulberry}{\text{Mulberry}}}\)

\({\displaystyle \color {NavyBlue}{\text{NavyBlue}}}\)

\({\displaystyle \color {OliveGreen}{\text{OliveGreen}}}\)

\({\displaystyle \color {Orange}{\text{Orange}}}\)

\({\displaystyle \color {OrangeRed}{\text{OrangeRed}}}\)

\({\displaystyle \color {Orchid}{\text{Orchid}}}\)

\({\displaystyle \color {Peach}{\text{Peach}}}\)

\({\displaystyle \color {Periwinkle}{\text{Periwinkle}}}\)

\({\displaystyle \color {PineGreen}{\text{PineGreen}}}\)

\({\displaystyle \color {Plum}{\text{Plum}}}\)

\({\displaystyle \color {ProcessBlue}{\text{ProcessBlue}}}\)

\({\displaystyle \color {Purple}{\text{Purple}}}\)

\({\displaystyle \color {RawSienna}{\text{RawSienna}}}\)

\({\displaystyle \color {Red}{\text{Red}}}\)

\({\displaystyle \color {RedOrange}{\text{RedOrange}}}\)

\({\displaystyle \color {RedViolet}{\text{RedViolet}}}\)

\({\displaystyle \color {Rhodamine}{\text{Rhodamine}}}\)

\({\displaystyle \color {RoyalBlue}{\text{RoyalBlue}}}\)

\({\displaystyle \color {RoyalPurple}{\text{RoyalPurple}}}\)

\({\displaystyle \color {RubineRed}{\text{RubineRed}}}\)

\({\displaystyle \color {Salmon}{\text{Salmon}}}\)

\({\displaystyle \color {SeaGreen}{\text{SeaGreen}}}\)

\({\displaystyle \color {Sepia}{\text{Sepia}}}\)

\({\displaystyle \color {SkyBlue}{\text{SkyBlue}}}\)

\({\displaystyle \color {SpringGreen}{\text{SpringGreen}}}\)

\({\displaystyle \color {Tan}{\text{Tan}}}\)

\({\displaystyle \color {TealBlue}{\text{TealBlue}}}\)

\({\displaystyle \color {Thistle}{\text{Thistle}}}\)

\({\displaystyle \color {Turquoise}{\text{Turquoise}}}\)

\({\displaystyle \color {Violet}{\text{Violet}}}\)

\({\displaystyle \color {VioletRed}{\text{VioletRed}}}\)

\({\displaystyle \color {White}{\text{White}}}\)

\({\displaystyle \color {WildStrawberry}{\text{WildStrawberry}}}\)

\({\displaystyle \color {Yellow}{\text{Yellow}}}\)

\({\displaystyle \color {YellowGreen}{\text{YellowGreen}}}\)

\({\displaystyle \color {YellowOrange}{\text{YellowOrange}}}\)

注︰输入时第一个字母必需以大写输入,如\color{OliveGreen}

例子

  • {\color{Blue}x^2}+{\color{Brown}2x} - {\color{OliveGreen}1}

    \({\displaystyle {\color {Blue}x^{2}}+{\color {Brown}2x}-{\color {OliveGreen}1}}\)

  • x_{\color{Maroon}1,2}=\frac{-b\pm\sqrt{{\color{Maroon}b^2-4ac}}}{2a}

    \({\displaystyle x_{\color {Maroon}1,2}={\frac {-b\pm {\sqrt {\color {Maroon}b^{2}-4ac}}}{2a}}}\)

外部链接

posted @ 2021-09-14 21:21  樱花赞  阅读(6084)  评论(1编辑  收藏  举报