简单证明圆锥体积为三分之一圆柱

把圆锥沿高分成\(k\)份,每份高\(\frac{h}{k}\)

当这一份很薄时,可以近似为一个圆柱。

\(n\)份半径:

\[\frac{nr}{k} \]

\(n\)份底面积:

\[\frac{\pi n^2 r^2}{k^2} \]

\(n\)份体积:

\[\frac{\pi hn^2r^2}{k^3} \]

总体积:

\[\sum_{n=1}^{k}\frac{\pi hr^2}{k^3}n^2 \]

因为\(1^2+2^2+3^2+...+k^2=\frac{k(k+1)(2k+1)}{6}\)(平方数列求和公式)

所以总体积

\[\begin{aligned} V &= \frac{\pi hr^2}{k^3}\cdot \frac{k(k+1)(2k+1)}{6} \\ &= \frac{\pi hr^2}{k^2}\cdot \frac{(k+1)(2k+1)}{6} \\ &= \pi hr^2 \frac{(1+\frac{1}{k})(2+\frac{1}{k})}{6} \end{aligned} \]

因为当\(k\)越来越大,总体积越接近于圆锥体积,\(\frac{1}{k}\)越接近于\(0\)

所以

\[V = \pi hr^2\frac{(1+\frac{1}{k})(2+\frac{1}{k})}{6} = \frac{\pi r^2 h}{3} \]

因为\(V_{圆柱}=\pi r^2 h\)

所以\(V_{圆锥}\)是与它等底等高的圆柱体积的\(\frac{1}{3}\)

posted @ 2019-04-11 20:02  樱花赞  阅读(7166)  评论(0编辑  收藏  举报