Brackets (区间DP)

Brackets

 POJ - 2955 

We give the following inductive definition of a “regular brackets” sequence:

  • the empty sequence is a regular brackets sequence,
  • if s is a regular brackets sequence, then (s) and [s] are regular brackets sequences, and
  • if a and b are regular brackets sequences, then ab is a regular brackets sequence.
  • no other sequence is a regular brackets sequence

For instance, all of the following character sequences are regular brackets sequences:

(), [], (()), ()[], ()[()]

while the following character sequences are not:

(, ], )(, ([)], ([(]

Given a brackets sequence of characters a1a2 … an, your goal is to find the length of the longest regular brackets sequence that is a subsequence of s. That is, you wish to find the largest m such that for indices i1i2, …, im where 1 ≤ i1 < i2 < … < im ≤ nai1ai2 … aim is a regular brackets sequence.

Given the initial sequence ([([]])], the longest regular brackets subsequence is [([])].

Input

The input test file will contain multiple test cases. Each input test case consists of a single line containing only the characters ()[, and ]; each input test will have length between 1 and 100, inclusive. The end-of-file is marked by a line containing the word “end” and should not be processed.

Output

For each input case, the program should print the length of the longest possible regular brackets subsequence on a single line.

Sample Input

((()))
()()()
([]])
)[)(
([][][)
end

Sample Output

6
6
4
0
6
题意:
  给出一个字符串,问该字符串中括号的最大的匹配是多少()为一对括号的匹配,[]为一对括号的匹配。
题解:
  区间DP
  dp[i][j]表示i-j这个区间中括号的最大匹配数,可知对于每一个区间来说,初值为如果s[i] s[j]恰好可以匹配,那么dp[i][j]=dp[i+1][j-1]+2,如果不匹配,那么dp[i][j]=dp[i+1][j-1];
然后遍历区间断点K,求最大值。
 1 #include<iostream>
 2 #include<cstdio>
 3 #include<cstring>
 4 #include<algorithm>
 5 using namespace std;
 6 char s[110];
 7 int dp[110][110];
 8 int main()
 9 {
10     while(~scanf("%s",s))
11     {
12         if(s[0]=='e')
13             break;
14         memset(dp,0,sizeof(dp));
15         int n=strlen(s);
16         for(int len=1;len<=n;len++)
17         {
18             for(int l=0;l+len<n;l++)
19             {
20                 int r=l+len;
21                 if((s[l]=='('&&s[r]==')')||(s[l]=='['&&s[r]==']'))
22                     dp[l][r]=dp[l+1][r-1]+2;
23                 for(int k=l;k<r;k++)
24                     dp[l][r]=max(dp[l][r],dp[l][k]+dp[k+1][r]);
25             }
26         }
27         printf("%d\n",dp[0][n-1]);
28     }
29 } 

 

posted @ 2018-12-04 16:56  *starry*  阅读(326)  评论(0编辑  收藏  举报