linux 3.10中完成量的使用
完成量是基于等待队列设计的,所以显然不能在中断上下文使用完成量。
struct completion { unsigned int done; wait_queue_head_t wait; };
我们来看一个使用完成量的经典例子:
struct kthread_create_info { /* Information passed to kthread() from kthreadd. */ int (*threadfn)(void *data); void *data; int node; /* Result passed back to kthread_create() from kthreadd. */ struct task_struct *result; struct completion done; struct list_head list; };
在创建内核线程的例子中,我们使用了一个kthread_create_info结构来封装了一个完成量:
struct task_struct *kthread_create_on_node(int (*threadfn)(void *data), void *data, int node, const char namefmt[], ...) { struct kthread_create_info create; create.threadfn = threadfn;---------------要创建的线程的主函数 create.data = data; create.node = node; init_completion(&create.done);------------动态初始化完成量 spin_lock(&kthread_create_lock); list_add_tail(&create.list, &kthread_create_list);-------------加入链表,相当于把请求挂在一个双向循环链表中 spin_unlock(&kthread_create_lock); wake_up_process(kthreadd_task);-----------唤醒处理完成量的内核线程,来处理我们发送的请求 wait_for_completion(&create.done);--------等待完成,这个在等待完成量的期间,会导致本进程睡眠
。。。。。。。
如上代码是提交请求的一侧,那么,处理请求的一侧是怎么完成该任务,并通知到请求方呢?
int kthreadd(void *unused) { struct task_struct *tsk = current; /* Setup a clean context for our children to inherit. */ set_task_comm(tsk, "kthreadd"); ignore_signals(tsk); set_cpus_allowed_ptr(tsk, cpu_all_mask); set_mems_allowed(node_states[N_MEMORY]); current->flags |= PF_NOFREEZE; for (;;) { set_current_state(TASK_INTERRUPTIBLE); if (list_empty(&kthread_create_list)) schedule(); __set_current_state(TASK_RUNNING); spin_lock(&kthread_create_lock); while (!list_empty(&kthread_create_list)) { struct kthread_create_info *create; create = list_entry(kthread_create_list.next, struct kthread_create_info, list);--------------取出请求 list_del_init(&create->list);------------将请求从链表隔离 spin_unlock(&kthread_create_lock);-------解锁,这个锁保证加入请求和解除请求的串行化 create_kthread(create);------------------创建线程 spin_lock(&kthread_create_lock); } spin_unlock(&kthread_create_lock); } return 0; }
简单地看,没看到怎么通知请求方,代码其实是在create_kthread中实现的:
static void create_kthread(struct kthread_create_info *create) { int pid; #ifdef CONFIG_NUMA current->pref_node_fork = create->node; #endif /* We want our own signal handler (we take no signals by default). */ pid = kernel_thread(kthread, create, CLONE_FS | CLONE_FILES | SIGCHLD); if (pid < 0) { create->result = ERR_PTR(pid); complete(&create->done);-------------------通知请求方,一般就是唤醒了 } }
以上就是使用完成量的经典例子,两个互不干扰的执行流,一个通过wait_for_completion来等待请求完成,一个通过complete,还有complete_all等来通知请求方,完成交互。
除了动态初始化一个完成量,还有一种静态初始化的方式,
static noinline void __init_refok rest_init(void) { int pid; rcu_scheduler_starting(); /* * We need to spawn init first so that it obtains pid 1, however * the init task will end up wanting to create kthreads, which, if * we schedule it before we create kthreadd, will OOPS. */ kernel_thread(kernel_init, NULL, CLONE_FS | CLONE_SIGHAND); numa_default_policy(); pid = kernel_thread(kthreadd, NULL, CLONE_FS | CLONE_FILES);------------创建2号进程,也就是kthradd内核线程 rcu_read_lock(); kthreadd_task = find_task_by_pid_ns(pid, &init_pid_ns); rcu_read_unlock(); complete(&kthreadd_done);------------唤醒被阻塞的进程
在kthreadd 创建之前,
static noinline void __init kernel_init_freeable(void) { /* * Wait until kthreadd is all set-up. */ wait_for_completion(&kthreadd_done);
也就是说,在2号进程,也就是 kthreadd 被创建好之前,1号进程其实是阻塞的。有一个疑问就是,为什么1号进程要等待2号进程呢?因为假设1号进程不等待,那么用户态进程就可能通过
系统调用来获取资源,而如果这些资源是由2号线程或者2号线程的子线程来维护的话,则必然产生oops。所以这个地方的完成量,起的是一个时序的作用。
我们可以看到,内核线程的创建接口,是由 kthreadd 内核线程来完成fork的,
ps -ef |grep -i kthreadd root 2 0 0 9月15 ? 00:00:00 [kthreadd]
这个内核线程的pid是2,其他所有的内核线程都是它fork出来的,因为init进程占据了pid 1,所以它的pid是2。
我们假设一下,如果pid 为1的init进程,最终不去执行
if (!run_init_process("/sbin/init") || !run_init_process("/etc/init") || !run_init_process("/bin/init") || !run_init_process("/bin/sh"))
那么它这个时候纯粹还是内核线程,它全部工作在内核态,没有用户态进程的os有没有用呢?
我觉得是有的,没有交互罢了,全部在内核态。恩,如果你把一些任务放在内核里面完成,完全可以不要用户态进程嘛。