洛谷4965 薇尔莉特的打字机(Trie,DP)

神仙题。

考虑在一棵 Trie 上进行染色,将可能出现的串的末尾染成黑色。答案就是黑点的个数。一开始只有 \(A\) 的末尾点是黑色。

当出现一个字符(不是退格)\(c\) 时,就要将每个黑点的 \(c\) 儿子都染成黑色。

然而这样一个点可能会有重复染色,不能直接乘 \(2\)

不妨记录一个 \(f[c]\) 表示有儿子 \(c\) 且该儿子是黑色的点的个数。

那么此时答案 \(ans\) 应该变成 \(2ans-f[c]\)(减掉已经是黑的儿子 \(c\) 的个数),同时更新一下 \(f[c]\),就是原来\(ans\)(原来的每个黑点都有一个黑儿子 \(c\))。其它的 \(f\) 不变。

当出现退格时:

退格实际上就是回到 Trie 上的父亲。

我们发现,一个字符不打,和打了再被退格是一样的。所以退格有用,当且仅当它删掉的是原来 \(A\) 串里的字符。

再仔细分析一波,如果是第 \(x\) 个退格,那么收到影响的点只有 \(A[n-x+1]\) 这个点。

(可以通过 Trie 理解,除了最浅的黑点,其它的黑点的父亲肯定都是黑点,所以只用考虑最浅的黑点,也就是 \(A[n-x+1]\) 这个点)

对这个点瞎搞一波就行了。

时间复杂度 \(O(n+m)\)

#include<bits/stdc++.h>
using namespace std;
const int maxn=5000500,mod=19260817;
#define lson o<<1,l,mid
#define rson o<<1|1,mid+1,r
#define FOR(i,a,b) for(int i=(a);i<=(b);i++)
#define ROF(i,a,b) for(int i=(a);i>=(b);i--)
#define MEM(x,v) memset(x,v,sizeof(x))
inline int read(){
	int x=0,f=0;char ch=getchar();
	while(ch<'0' || ch>'9') f|=ch=='-',ch=getchar();
	while(ch>='0' && ch<='9') x=x*10+ch-'0',ch=getchar();
	return f?-x:x;
}
int n,m,f[26],ans=1,at;
char a[maxn],b[maxn];
int main(){
	at=n=read();m=read();
	scanf("%s%s",a+1,b+1);
	FOR(i,1,m){
		int c=b[i]-'A';
		if(c<=25){
			int tmp=f[c];
			f[c]=ans;
			ans=(2*ans-tmp+mod)%mod;
		}
		else{
			if(!at) continue;
			f[a[at]-'A']=(f[a[at]-'A']+1)%mod;
			ans=(ans+1)%mod;
			at--;
		}
	}
	printf("%d\n",ans);
}
posted @ 2019-09-18 16:41  ATS_nantf  阅读(342)  评论(0编辑  收藏  举报