NOIP2015 D2T3 洛谷2680 BZOJ4326 运输计划 解题报告

前言:个人认为这是历年NOIP中比较简单的最后一题了,因此将自己的思路与大家分享。

题目大意:

给一棵无根树,给出m条路径。允许将树上的一条边的权值改为0。求m条路径长度最大值的最小值。n,m<=300000.

思考:

题目将40分部分分给了链的情况。50分的部分分给了n,m<=3000.说明以下两点:

  1.链的情况可能是问题的突破口(类比NOIP2016D1T2的部分分设置)。

  2.可能要从较小的n,m入手(经验之谈:当n,m较小有30分时大多情况是为了分数好看,但n,m较小有50-80分则是启发正解)  

那么我们将问题简化成一条链。

对链的情况的分析:

当树退化成链的时候,我们可以将树用链表保存。为了简单起见,我们用映射数组m将链表中距离链头i个结点的编号映射成i+1。链头的编号为1。这样可以将链表保存在普通的数组里,而不是有nxt域的数组。

下文用m(i)表示原来第i个结点的映射。

对于任意询问u,v,必然是从数组的第min(m(v),m(u))个元素到第max(m(u),m(v))个元素。我们可以通过前缀和在O(n)预处理,O(1)的时间获得答案。这样我们得到了未删除边的答案m个。

现在我们要减少一条边的权值到0。不难发现减少的边一定在得到最大答案的路径上。但不一定是得到最大答案的路径上边权最大的边。原因呢?

分析答案式:

最终答案ans=max(w(l1),w(l2),...,w(lm)).w(l)为路径l的长度。当我们减掉的边是最大答案路径上边权最大的边时,答案可能受到次大答案路径的影响。当我们减掉最大答案路径和次大答案路径的交上的最大边时,答案可能受到第三大答案路径的影响。由此分析,答案可能是要减去最大答案路径的最大值,最大答案路径和次大答案路径的交集的最大值,...,所有路径交集的最大值之一。在模拟样例的过程中,我们可以发现答案应该随着上述删除边的变化逐渐变小或不变。若答案变大则可以停止向下查找。

继续链上的分析:

网上的题解大多借着答案的单调性以及要求最大值最小,想到了二分答案。在链上时间复杂度为O(m*logmax).

我比较蠢,没看出来二分答案。我来谈谈我在链上的做法。

将数组放在线段树上,线段树保存三个data。第一个是区间最大值maxx。第二个是区间被所有路径覆盖的最大值chs,第三个是区间最大覆盖次数mxcv。对于任意的l到r。给l到r这一段的区间最大覆盖次数加一。查找操作时如果mxcv不等于当前枚举的路径数量则直接return。否则返回chs。时间复杂度O(mlogn)。

放在树上:

链上的情况解决了,那么树上就很容易了。树链剖分后将问题退化至链上即可解决,时间复杂度需要加一个log,为O(mlognlogn)。

但是不知道为什么我的用时比树上前缀和的O(nlogmaxn)要快

代码:

  1 #include<bits/stdc++.h>
  2 using namespace std;
  3 const int maxn = 300003;
  4 struct edge{int to,w,nxt;}e[maxn<<1],get_LCA[maxn<<1];
  5 struct node{int mxcv,maxx,chs,lazy;}t[maxn<<2];
  6 struct ask{int from,to,LCA,len;}Pro[maxn],*P=Pro;
  7 int n,m,NM,NM2,g[maxn],top[maxn],fa[maxn],sz[maxn],son[maxn],ABOUT_LCA[maxn];
  8 int pre[maxn],dep[maxn],call[maxn],abcall[maxn],tms[maxn],FW[maxn],stnd=1,l,r;
  9 int found(int x){
 10     int rx = x; while(pre[rx]!=rx)rx=pre[rx];
 11     while(pre[x]!=rx){int t=pre[x];pre[x]=rx;x=t;}
 12     return rx;
 13 }
 14 void dfs1(int now,int Prt,int DPTH){//Prt=parent                 //as we get fa,size,depth,Father_road_weight,we can also get LCA
 15     fa[now] = Prt;dep[now] = DPTH;int maxx = 0;
 16     for(int i=ABOUT_LCA[now];i;i=get_LCA[i].nxt){
 17     if(!fa[get_LCA[i].to])continue;
 18     Pro[get_LCA[i].w].LCA = found(get_LCA[i].to);
 19     }
 20     for(int i=g[now];i;i=e[i].nxt){
 21     if(e[i].to==Prt)continue;
 22     dfs1(e[i].to,now,DPTH+e[i].w);
 23     sz[now]+=sz[e[i].to];FW[e[i].to]=e[i].w;
 24     if(sz[maxx]<sz[e[i].to])maxx=e[i].to;
 25     }
 26     sz[now]++;son[now] = maxx;
 27     pre[found(now)] = found(Prt);
 28 }
 29 void dfs2(int now,int tp,int Val){
 30     if(tp != now) NM++,call[now] = NM,abcall[NM]=Val;
 31     top[now] = tp;
 32     if(son[now]) dfs2(son[now],tp,FW[son[now]]);
 33     for(int i=g[now];i;i=e[i].nxt){
 34     if(e[i].to == son[now] || e[i].to == fa[now])continue;
 35     dfs2(e[i].to,e[i].to,e[i].w);
 36     }
 37 }
 38 void build_tree(int l,int r,int now){
 39     if(l == r) t[now].chs=t[now].maxx=abcall[l];
 40     else{
 41     int mid = (l+r)/2;
 42     build_tree(l,mid,now<<1),build_tree(mid+1,r,now<<1|1);
 43     t[now].maxx = t[now].chs = max(t[now<<1].maxx,t[now<<1|1].maxx);
 44     }
 45 }
 46 void add_edge(int a,int b,int v,int NUM[],int &u,edge NE[]){
 47     NE[++u] = (edge){b,v,NUM[a]}; NUM[a] = u;
 48     NE[++u] = (edge){a,v,NUM[b]}; NUM[b] = u;
 49 }
 50 void read(){
 51     scanf("%d%d",&n,&m);
 52     for(int i=1,a,b,v;i<n;i++){scanf("%d%d%d",&a,&b,&v);add_edge(a,b,v,g,NM,e);}
 53     for(int i=1;i<=m;i++){scanf("%d%d",&Pro[i].from,&Pro[i].to);}
 54     for(int i=1;i<=m;i++){add_edge(Pro[i].from,Pro[i].to,i,ABOUT_LCA,NM2,get_LCA);}
 55 }
 56 void Heavy_Lt_Dec(){
 57     for(int i=1;i<=n;i++) pre[i] = i;
 58     dfs1(1,-1,0); NM=0; dfs2(1,1,0); build_tree(1,NM,1);
 59 }
 60 void push_up(int now){
 61     t[now].mxcv = max(t[now<<1].mxcv,t[now<<1|1].mxcv);
 62     if(t[now<<1].mxcv > t[now<<1|1].mxcv)t[now].chs=t[now<<1].chs;
 63     else if(t[now<<1].mxcv < t[now<<1|1].mxcv)t[now].chs=t[now<<1|1].chs;
 64     else t[now].chs = max(t[now<<1].chs,t[now<<1|1].chs);
 65 }
 66 void push_down(int now){
 67     t[now<<1].lazy+=t[now].lazy;t[now<<1|1].lazy+=t[now].lazy;
 68     t[now<<1].mxcv+=t[now].lazy;t[now<<1|1].mxcv+=t[now].lazy;
 69     t[now].lazy=0;
 70 }
 71 int update(int tl,int tr,int now){
 72     if(t[now].mxcv < stnd-1 || l>tr || r<tl)return 0;
 73     if(tl >= l && tr <= r){t[now].mxcv++;t[now].lazy++;return t[now].chs;}
 74     if(t[now].lazy) push_down(now);
 75     int mid=(tl+tr)/2,ans=max(update(tl,mid,now*2),update(mid+1,tr,now*2+1));
 76     push_up(now);
 77     return ans;
 78 }
 79 int ADD_Tree(int OP,int ED,int PB){
 80     int ans = 0;
 81     while(OP != PB){
 82     l=call[son[top[OP]]],r=call[OP];int kkk = top[OP];
 83     if(top[OP]==top[PB])l=call[son[PB]],kkk=PB;
 84     if(top[OP]==OP){if(++tms[OP]==stnd)ans=max(ans,FW[OP]);OP=fa[OP];}
 85     else{ans=max(ans,update(1,NM,1));OP=kkk;}
 86     }
 87     while(ED != PB){
 88     l=call[son[top[ED]]],r=call[ED];int kkk = top[ED];
 89     if(top[ED]==top[PB])l=call[son[PB]],kkk=PB;
 90     if(top[ED]==ED){if(++tms[ED]==stnd)ans=max(ans,FW[ED]);ED=fa[ED];}
 91     else{ans=max(ans,update(1,NM,1));ED=kkk;}
 92     }
 93     return ans;
 94 }
 95 int cmp(ask a,ask b){return a.len<b.len;}
 96 void work(){
 97     for(int i=1;i<=m;i++)Pro[i].len=dep[P[i].from]+dep[P[i].to]-2*dep[P[i].LCA];
 98     sort(Pro+1,Pro+m+1,cmp);int maxans = Pro[m].len;
 99     for(int i=m;i>=1;i--,stnd++){
100     int ans = max(P[m].len-ADD_Tree(P[i].from,P[i].to,P[i].LCA),P[i-1].len);
101     if(ans > maxans)break; else maxans = ans;
102     }
103     printf("%d",maxans);
104 }
105 int main(){read();Heavy_Lt_Dec();work();return 0;}

 

posted @ 2017-10-16 10:22  社会主义市场经济  阅读(306)  评论(0编辑  收藏  举报