数据结构和算法总结(三):A* 寻路算法
前言
复习下寻路相关的东西,而且A star寻路在游戏开发中应用挺多的,故记录下。
正文
迪杰斯特拉算法
说起A*得先谈谈Dijkstra算法,它是在BFS基础上的一种带权值的两点最短寻路贪心算法。
算法步骤
0.初始化图,输入起点,将所有点到起始点的距离设置为∞。
1.将起始点OriginNode记录为已访问,并从OriginNode开始将周围的点加入到待遍历列表中,更新到达这些点的距离,并将他们的父节点设置为起始点OriginNode。
2.如果待遍历列表不为空,则从列表中取出到达距离最小的点currentNode;反之则跳到第5步。
3.遍历currentNode邻接的点neighbors:
1) 如果已访问过,则遍历其他点。
2) 如果邻接的某点neighbor已经在待遍历列表中,则比较neighbor当前的距离distance(OriginNode,neighbor) 与 distance(OriginNode,currentNode) + distance(currentNode,neighbor), 如果后者更小,则将neighbor的距离值更新为该值并将父节点设置为currentNode。
3) 如果不在待遍历列表,则将neighbor放入待遍历列表,并则将neighbor的距离值更新为 distance(OriginNode,currentNode) + distance(currentNode,neighbor), 并将父节点设置为currentNode。
4.重复第2步
5.输入终点,从终点开始回溯父节点,打印路径。
动态过程
A* 寻路算法
A*的思路其实与Dijkstra一致,相比较Dijkstra,A*引入了一个启发公式来衡量消耗
其中 g(n) 代表从起始点到当前点的消耗,h(n) 代表终点到当前点的预估消耗(通常用曼哈顿距离或者欧拉距离衡量,这里不赘述,参考)。
算法思路
/* A*寻路算法 带权值的BFS 每个点保存达到该点的消耗F = G值(出发点到当前点的代价值) + H值(目标点到当前点的预估距离,常用曼哈顿距离或者欧拉距离) 维护着两个列表,开放列表和关闭列表 逻辑: 初始化列表Close,Open,Path,将StartNode放入Open列表中 while(true) { 从Open表中取得F值最小的节点CurrentNode. 从Open表中删除CurrentNode 将CurrentNode加入Close表中 if ( CurrentNode 是 目标点targetNode) { 从CurrentNode点回溯直到起点并将所有回溯的节点加入Path表 打印Path表 return; } for (CurrentNode 的每一个邻接点 neighbor) { if(neighbor 在 Close表中 || neighbor 不可通行) { continue; } if(neighbor 在 Open表中) { if( CurrentNode 到达neighbor的消耗costG + node的G值 < neighbor的G值) { 更新neighbor的G值; 将neighbor的回溯节点fatherNode设置为CurrentNode; } } else { 更新neighbor的G值; 更新neighbor的H值; 将neighbor的回溯节点fatherNode设置为CurrentNode; 将neighbor放入Open列表; } } } */
动态过程
代码:
AstarNode的定义实现.
Astar.h
#pragma once #include <vector> #include <math.h> using std::vector; class AstarNode { private: int m_igValue; int m_ihValue; int m_ifValue; AstarNode* m_father; public: int x; int y; bool isPass; public: void SetG(int iValue); int GetG() const; int GetH() const; int GetF() const; void CalculateH(const AstarNode* endNode); void SetFather(AstarNode* node); AstarNode* GetFather() const; bool isInList(const vector<AstarNode*>& nodeList) const; public: AstarNode(); AstarNode(int x,int y); AstarNode(const AstarNode& node); ~AstarNode(); AstarNode& operator=(const AstarNode& node); };
Astar.cpp
#include "Astar.h" AstarNode::AstarNode() { isPass = true; m_igValue = 0; m_ihValue = 0; m_ifValue = 0; m_father = nullptr; } AstarNode::AstarNode(int x,int y) { isPass = true; m_igValue = 0; m_ihValue = 0; m_ifValue = 0; m_father = nullptr; this->x = x; this->y = y; } AstarNode::AstarNode(const AstarNode& node) { isPass = node.isPass; m_igValue = node.GetG(); m_ihValue = node.GetH(); m_ifValue = node.GetF(); m_father = node.GetFather(); this->x = node.x; this->y = node.y; } AstarNode& AstarNode::operator=(const AstarNode& node) { isPass = node.isPass; m_igValue = node.GetG(); m_ihValue = node.GetH(); m_ifValue = node.GetF(); m_father = node.GetFather(); this->x = node.x; this->y = node.y; return *this; } AstarNode::~AstarNode() { } void AstarNode::SetG(int iValue) { m_igValue = iValue; } int AstarNode::GetG() const { return m_igValue; } int AstarNode::GetF() const { return m_igValue + m_ihValue; } int AstarNode::GetH() const { return m_ihValue; } void AstarNode::CalculateH(const AstarNode* endNode) { m_ihValue = abs(endNode->x - x) + abs(endNode->y - y); } void AstarNode::SetFather(AstarNode* node) { m_father = node; } AstarNode* AstarNode::GetFather() const { return m_father; } bool AstarNode::isInList(const vector<AstarNode*>& nodeList) const { for(auto iter = nodeList.begin();iter != nodeList.end();iter++) { if((*iter)->x == this->x && (*iter)->y == this->y) return true; } return false; }
main.cpp
#include "Astar.cpp" #include <algorithm> using namespace std; /* 'e' 终点 's' 起点 '#' 障碍物 '-' 可通行点 'o' 回溯路径节点 */ vector<vector<char>> graph = { {'-', '-', '-', '-', '-', '-', '-'}, {'-', '-', 'e', '#', '-', '-', '-'}, {'-', '#', '#', '#', '#', '-', '-'}, {'-', '-', '-', '-', '#', '#', '-'}, {'-', '-', '#', '-', '#', '-', '-'}, {'-', '-', '-', '#', '-', '-', '-'}, {'-', '-', '-', '-', '-', '-', 's'}, }; void BuildGraph(vector<vector<AstarNode *>> &astarGraph, AstarNode &start, AstarNode &end) { for (int i = 0; i < astarGraph.size(); i++) { auto row = astarGraph[i]; for (int j = 0; j < row.size(); j++) { char mark = graph[i][j]; if (mark == 's') { start.x = i; start.y = j; start.SetG(0); start.CalculateH(&end); astarGraph[i][j] = &start; } else if (mark == 'e') { end.x = i; end.y = j; astarGraph[i][j] = &end; } else if (mark == '#') { astarGraph[i][j] = new AstarNode(i, j); astarGraph[i][j]->isPass = false; } else { astarGraph[i][j] = new AstarNode(i, j); } } } } void printGraph() { for (int i = 0; i < graph.size(); i++) { auto line = graph[i]; for (int j = 0; j < line.size(); j++) { cout << line[j] << " "; } cout << endl; } } vector<AstarNode *>::iterator GetMinFNode(vector<AstarNode *> &openList) { auto tmp = openList.begin(); for (auto iter = openList.begin(); iter != openList.end(); iter++) { if ((*iter)->GetF() < (*tmp)->GetF()) { tmp = iter; } } return tmp; } inline int GetCost(int xDiff, int yDiff) { if (xDiff == 0 || yDiff == 0) return 10; return 14; } void SearchOneNode(AstarNode ¤tNode, AstarNode &neighbor, AstarNode &startNode, AstarNode &endNode, vector<AstarNode *> &openList, vector<AstarNode *> &closeList) { if (neighbor.isInList(closeList) || !neighbor.isPass) return; int gCost = GetCost(currentNode.x - neighbor.x, currentNode.y - neighbor.y); if (neighbor.isInList(openList)) { if (currentNode.GetG() + gCost < neighbor.GetG()) { neighbor.SetG(currentNode.GetG() + gCost); neighbor.SetFather(¤tNode); } } else { neighbor.SetG(currentNode.GetG() + gCost); neighbor.SetFather(¤tNode); neighbor.CalculateH(&endNode); openList.push_back(&neighbor); } } void Astar() { vector<AstarNode *> OpenList; vector<AstarNode *> CloseList; vector<AstarNode *> Path; size_t len = graph.size(); vector<vector<AstarNode *>> astarGraph(len, vector<AstarNode *>(len)); AstarNode startNode; AstarNode endNode; BuildGraph(astarGraph, startNode, endNode); OpenList.push_back(&startNode); while (!OpenList.empty()) { auto it = GetMinFNode(OpenList); AstarNode *currentNode = *it; OpenList.erase(it); CloseList.push_back(currentNode); if (currentNode->x == endNode.x && currentNode->y == endNode.y) { while (currentNode->GetFather()) { graph[currentNode->x][currentNode->y] = graph[currentNode->x][currentNode->y] == '-' ? 'o' : 'e'; Path.push_back(currentNode); currentNode = currentNode->GetFather(); } printGraph(); break; } int curX = currentNode->x; int curY = currentNode->y; int row = graph.size(); int column = row; if (curX + 1 < row) SearchOneNode(*currentNode, *astarGraph[curX + 1][curY], startNode, endNode, OpenList, CloseList); if (curX - 1 >= 0) SearchOneNode(*currentNode, *astarGraph[curX - 1][curY], startNode, endNode, OpenList, CloseList); if (curY + 1 < column) SearchOneNode(*currentNode, *astarGraph[curX][curY + 1], startNode, endNode, OpenList, CloseList); if (curY - 1 >= 0) SearchOneNode(*currentNode, *astarGraph[curX][curY - 1], startNode, endNode, OpenList, CloseList); if (curX - 1 >= 0 && curY - 1 >= 0) SearchOneNode(*currentNode, *astarGraph[curX - 1][curY - 1], startNode, endNode, OpenList, CloseList); if (curX - 1 >= 0 && curY + 1 < column) SearchOneNode(*currentNode, *astarGraph[curX - 1][curY + 1], startNode, endNode, OpenList, CloseList); if (curX + 1 < row && curY - 1 >= 0) SearchOneNode(*currentNode, *astarGraph[curX + 1][curY - 1], startNode, endNode, OpenList, CloseList); if (curX + 1 < row && curY + 1 < row) SearchOneNode(*currentNode, *astarGraph[curX + 1][curY + 1], startNode, endNode, OpenList, CloseList); } cout << endl; } int main() { auto start = chrono::steady_clock::now(); Astar(); auto end = chrono::steady_clock::now(); cout << chrono::duration<double, milli>(end - start).count() << " ms" << endl; getchar(); }
参考资料