1.4 查找最大或最小的 N 个元素
解决方案
heapq 模块有两个函数:nlargest()
和 nsmallest()
可以完美解决这个问题。
1 2 3 4 | import heapq nums = [1, 8, 2, 23, 7, -4, 18, 23, 42, 37, 2] print(heapq.nlargest(3, nums)) # Prints [42, 37, 23] print(heapq.nsmallest(3, nums)) # Prints [-4, 1, 2] |
两个函数都能接受一个关键字参数,用于更复杂的数据结构中:
1 2 3 4 5 6 7 8 9 10 | portfolio = [ { 'name' : 'IBM' , 'shares' : 100, 'price' : 91.1}, { 'name' : 'AAPL' , 'shares' : 50, 'price' : 543.22}, { 'name' : 'FB' , 'shares' : 200, 'price' : 21.09}, { 'name' : 'HPQ' , 'shares' : 35, 'price' : 31.75}, { 'name' : 'YHOO' , 'shares' : 45, 'price' : 16.35}, { 'name' : 'ACME' , 'shares' : 75, 'price' : 115.65} ] cheap = heapq.nsmallest(3, portfolio, key=lambda s: s[ 'price' ]) expensive = heapq.nlargest(3, portfolio, key=lambda s: s[ 'price' ]) |
上面代码在对每个元素进行对比的时候,会以 price
的值进行比较。
讨论
如果你想在一个集合中查找最小或最大的 N 个元素,并且 N 小于集合元素数量,那么这些函数提供了很好的性能。 因为在底层实现里面,首先会先将集合数据进行堆排序后放入一个列表中:
1 2 3 4 5 6 7 | >>> nums = [1, 8, 2, 23, 7, -4, 18, 23, 42, 37, 2] >>> import heapq >>> heap = list(nums) >>> heapq.heapify(heap) >>> heap [-4, 2, 1, 23, 7, 2, 18, 23, 42, 37, 8] >>> |
堆数据结构最重要的特征是 heap[0]
永远是最小的元素。并且剩余的元素可以很容易的通过调用 heapq.heappop()
方法得到, 该方法会先将第一个元素弹出来,然后用下一个最小的元素来取代被弹出元素(这种操作时间复杂度仅仅是 O(log N),N 是堆大小)。 比如,如果想要查找最小的 3 个元素,你可以这样做:
1 2 3 4 5 6 | >>> heapq.heappop(heap) -4 >>> heapq.heappop(heap) 1 >>> heapq.heappop(heap) 2 |
当要查找的元素个数相对比较小的时候,函数 nlargest()
和 nsmallest()
是很合适的。 如果你仅仅想查找唯一的最小或最大(N=1)的元素的话,那么使用 min()
和 max()
函数会更快些。 类似的,如果 N 的大小和集合大小接近的时候,通常先排序这个集合然后再使用切片操作会更快点 ( sorted(items)[:N]
或者是 sorted(items)[-N:]
)。 需要在正确场合使用函数 nlargest()
和 nsmallest()
才能发挥它们的优势 (如果 N 快接近集合大小了,那么使用排序操作会更好些)。
尽管你没有必要一定使用这里的方法,但是堆数据结构的实现是一个很有趣并且值得你深入学习的东西。 基本上只要是数据结构和算法书籍里面都会有提及到。 heapq
模块的官方文档里面也详细的介绍了堆数据结构底层的实现细节。
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 基于Microsoft.Extensions.AI核心库实现RAG应用
· Linux系列:如何用heaptrack跟踪.NET程序的非托管内存泄露
· 开发者必知的日志记录最佳实践
· SQL Server 2025 AI相关能力初探
· 震惊!C++程序真的从main开始吗?99%的程序员都答错了
· 单元测试从入门到精通
· 【硬核科普】Trae如何「偷看」你的代码?零基础破解AI编程运行原理
· 上周热点回顾(3.3-3.9)
· winform 绘制太阳,地球,月球 运作规律