redis实战优化二
参考:
图灵课堂
缓存穿透之布隆过滤器
布隆过滤器,底层是一个大的bitmap数组,值是0或者1,经过多个hash函数进行计算后,针对布隆过滤器的长度取模,针对取模得到的值的位置赋值为1,因为hash函数存在计算冲突,所以会有一定的误差,但是这个是可以接受的。同时布隆过滤器初始化的时候要指定存储的元素大概个数,然后指定误差率,这样可以根据这两个参数进行初始化布隆过滤器的长度;误差率当然是越小越好,但是越小会导致数组长度增加,并且hash函数增加,每次运算的效率就会下降,这个是要综合考虑的。并且布隆过滤器是不能删除无效数据的,这个是要注意的。
布谷鸟过滤器据说是可以进行数据的删除,但是生产使用并不多。
<dependency>
<groupId>org.redisson</groupId>
<artifactId>redisson</artifactId>
<version>3.6.5</version>
</dependency>
示例代码
package com.redisson;
import org.redisson.Redisson;
import org.redisson.api.RBloomFilter;
import org.redisson.api.RedissonClient;
import org.redisson.config.Config;
public class RedissonBloomFilter {
public static void main(String[] args) {
Config config = new Config();
config.useSingleServer().setAddress("redis://localhost:6379");
//构造Redisson
RedissonClient redisson = Redisson.create(config);
RBloomFilter<String> bloomFilter = redisson.getBloomFilter("nameList");
//初始化布隆过滤器:预计元素为100000000L,误差率为3%,根据这两个参数会计算出底层的bit数组大小
bloomFilter.tryInit(100000000L,0.03);
//将zhuge插入到布隆过滤器中
bloomFilter.add("hh");
//判断下面号码是否在布隆过滤器中
System.out.println(bloomFilter.contains("dd"));//false
System.out.println(bloomFilter.contains("gg"));//false
System.out.println(bloomFilter.contains("hh"));//true
}
}
//初始化布隆过滤器
RBloomFilter<String> bloomFilter = redisson.getBloomFilter("nameList");
//初始化布隆过滤器:预计元素为100000000L,误差率为3%
bloomFilter.tryInit(100000000L,0.03);
//把所有数据存入布隆过滤器
void init(){
for (String key: keys) {
bloomFilter.put(key);
}
}
String get(String key) {
// 从布隆过滤器这一级缓存判断下key是否存在
Boolean exist = bloomFilter.contains(key);
if(!exist){
return "";
}
// 从缓存中获取数据
String cacheValue = cache.get(key);
// 缓存为空
if (StringUtils.isBlank(cacheValue)) {
// 从存储中获取
String storageValue = storage.get(key);
cache.set(key, storageValue);
// 如果存储数据为空, 需要设置一个过期时间(300秒)
if (storageValue == null) {
cache.expire(key, 60 * 5);
}
return storageValue;
} else {
// 缓存非空
return cacheValue;
}
}
缓存雪崩
4)缓存过期时间不在同一时间过期,在基础上加上一个随机值。
热点缓存key重建优化
热点缓存key失效就类似于缓存击穿。
- 当前key是一个热点key(例如一个热门的娱乐新闻),并发量非常大。
- 重建缓存不能在短时间完成, 可能是一个复杂计算, 例如复杂的SQL、 多次IO、 多个依赖等。
String get(String key) {
// 从Redis中获取数据
String value = redis.get(key);
// 如果value为空, 则开始重构缓存
if (value == null) {
// 只允许一个线程重建缓存, 使用nx, 并设置过期时间ex
String mutexKey = "mutext:key:" + key;
if (redis.set(mutexKey, "1", "ex 180", "nx")) {
// 从数据源获取数据
value = db.get(key);
// 回写Redis, 并设置过期时间
redis.setex(key, timeout, value);
// 删除key_mutex
redis.delete(mutexKey);
}// 其他线程休息50毫秒后重试
else {
Thread.sleep(50);
get(key);
}
}
return value;
}
缓存与数据库双写不一致
开发规范与性能优化
一、键值设计
1. key名设计
- (1)【建议】: 可读性和可管理性
- (2)【建议】:简洁性
- (3)【强制】:不要包含特殊字符
2. value设计
- (1)【强制】:拒绝bigkey(防止网卡流量、慢查询)
- 字符串类型:它的big体现在单个value值很大,一般认为超过10KB就是bigkey。
- 非字符串类型:哈希、列表、集合、有序集合,它们的big体现在元素个数太多。
bigkey的危害:
bigkey的产生:
- (2)【推荐】:选择适合的数据类型。
二、命令使用
1.【推荐】 O(N)命令关注N的数量
2.【推荐】:禁用命令
3.【推荐】合理使用select
4.【推荐】使用批量操作提高效率
5.【建议】
三、客户端使用
1.【推荐】
2.【推荐】
JedisPoolConfig jedisPoolConfig = new JedisPoolConfig();
jedisPoolConfig.setMaxTotal(5);
jedisPoolConfig.setMaxIdle(2);
jedisPoolConfig.setTestOnBorrow(true);
JedisPool jedisPool = new JedisPool(jedisPoolConfig, "192.168.0.60", 6379, 3000, null);
Jedis jedis = null;
try {
jedis = jedisPool.getResource();
//具体的命令
jedis.executeCommand()
} catch (Exception e) {
logger.error("op key {} error: " + e.getMessage(), key, e);
} finally {
//注意这里不是关闭连接,在JedisPool模式下,Jedis会被归还给资源池。
if (jedis != null)
jedis.close();
}
连接池参数含义:
序号
|
参数名 | 含义 | 默认值 | 使用建议 |
1 |
maxTotal
|
资源池中最大连接数
|
8 | 如下 |
2 |
maxIdle
|
资源池允许最大空闲
的连接数
|
8 | 如下 |
3 |
minIdle
|
资源池确保最少空闲
的连接数
|
0 | 如下 |
4 | blockWhenExhausted |
当资源池用尽后,调用者是否要等待。只有当为true时,下面
的maxWaitMillis才会生效
|
true | 建议使用默认值 |
5 |
maxWaitMillis
|
当资源池连接用尽后,调用者的最大等待时间(单位为毫秒)
|
-1:表示永不超时
|
不建议使用默认值 |
6 |
testOnBorrow
|
向资源池借用连接时是否做连接有效性检测(ping),无效连接会被移除
|
false |
业务量很大时候建议设置为false(多一次ping的开销)。
|
7 |
testOnReturn
|
向资源池归还连接时是否做连接有效性检测(ping),无效连接会被移除
|
false |
业务量很大时候建议设置为false(多一次ping的开销)。
|
8 |
jmxEnabled
|
是否开启jmx监控,可用于监控
|
true |
建议开启,但应用本身也要开启
|
优化建议:
1)maxTotal:最大连接数,早期的版本叫maxActive 实际上这个是一个很难回答的问题,考虑的因素比较多:
业务希望Redis并发量
客户端执行命令时间
Redis资源:例如 nodes(例如应用个数) * maxTotal 是不能超过redis的最大连接数 maxclients。
资源开销:例如虽然希望控制空闲连接(连接池此刻可马上使用的连接),但是不希望因 为连接池的频繁释放创建连接造成不必靠开销。
以一个例子说明。
假设: 一次命令时间(borrow|return resource + Jedis执行命令(含网络) )的平均耗时约为 1ms,一个连接的QPS大约是1000
业务期望的QPS是50000
那么理论上需要的资源池大小是50000 / 1000 = 50个。
但事实上这是个理论值,还要考虑到要 比理论值预留一些资源,通常来讲maxTotal可以比理论值大一些。
但这个值不是越大越好,一方面连接太多占用客户端和服务端资源,另一方面对于Redis这种高 QPS的服务器,一个大命令的阻塞即使设置再大资源池仍然会无济于事。
2)maxIdle和minIdle
maxIdle实际上才是业务需要的最大连接数,maxTotal是为了给出余量,所以maxIdle不要设置 过小,否则会有new Jedis(新连接)开销。
连接池的最佳性能是maxTotal = maxIdle,这样就避免连接池伸缩带来的性能干扰。但是如果 并发量不大或者maxTotal设置过高,会导致不必要的连接资源浪费。一般推荐maxIdle可以设置 为按上面的业务期望QPS计算出来的理论连接数,maxTotal可以再放大一倍。
minIdle(最小空闲连接数),与其说是最小空闲连接数,不如说是"至少需要保持的空闲连接 数",在使用连接的过程中,如果连接数超过了minIdle,那么继续建立连接,如果超过了 maxIdle,当超过的连接执行完业务后会慢慢被移出连接池释放掉。
如果系统启动完马上就会有很多的请求过来,那么可以给redis连接池做预热,比如快速的创建一 些redis连接,执行简单命令,类似ping(),快速的将连接池里的空闲连接提升到minIdle的数量。、
List<Jedis> minIdleJedisList = new ArrayList<Jedis>(jedisPoolConfig.getMinIdle());
for (int i = 0; i < jedisPoolConfig.getMinIdle(); i++) {
Jedis jedis = null;
try {
jedis = pool.getResource();
minIdleJedisList.add(jedis);
jedis.ping();
} catch (Exception e) {
logger.error(e.getMessage(), e);
} finally {
//注意,这里不能马上close将连接还回连接池,否则最后连接池里只会建立1个连接。。
// 这里是因为每次初始化一个连接之后,如果close,就会将这个连接放入到连接池,然后下次循环去连接池那连接还是这一个连接,因为这个for循环是串行的。
//jedis.close();
}
}
//统一将预热的连接还回连接池
for (int i = 0; i < jedisPoolConfig.getMinIdle(); i++) {
Jedis jedis = null;
try {
jedis = minIdleJedisList.get(i);
//将连接归还回连接池
jedis.close();
} catch (Exception e) {
logger.error(e.getMessage(), e);
} finally {
}
}
3.【建议】
高并发下建议客户端添加熔断功能(例如sentinel、hystrix)
4.【推荐】
设置合理的密码,如有必要可以使用SSL加密访问
5.【建议】
Redis对于过期键有三种清除策略:
被动删除:当读/写一个已经过期的key时,会触发惰性删除策略,直接删除掉这个过期key
主动删除:由于惰性删除策略无法保证冷数据被及时删掉,所以Redis会定期(默认每100ms)主动淘汰一批已过期的key,这里的一批只是部分过期key,所以可能会出现部分key已经过期但还没有被清理掉的情况,导致内存并没有被释放
当前已用内存超过maxmemory限定时,触发主动清理策略
主动清理策略在Redis 4.0 之前一共实现了 6 种内存淘汰策略,在 4.0 之后,又增加了 2 种策略,总共8种:
a) 针对设置了过期时间的key做处理:
volatile-ttl:在筛选时,会针对设置了过期时间的键值对,根据过期时间的先后进行删除,越早过期的越先被删除。
volatile-random:就像它的名称一样,在设置了过期时间的键值对中,进行随机删除。
volatile-lru:会使用 LRU 算法筛选设置了过期时间的键值对删除。
volatile-lfu:会使用 LFU 算法筛选设置了过期时间的键值对删除。
b) 针对所有的key做处理:
allkeys-random:从所有键值对中随机选择并删除数据。
allkeys-lru:使用 LRU 算法在所有数据中进行筛选删除。
allkeys-lfu:使用 LFU 算法在所有数据中进行筛选删除。
c) 不处理:
noeviction:不会剔除任何数据,拒绝所有写入操作并返回客户端错误信息"(error) OOM command not allowed when used memory",此时Redis只响应读操作。
LRU 算法(Least Recently Used,最近最少使用) 淘汰很久没被访问过的数据,以最近一次访问时间作为参考。
LFU 算法(Least Frequently Used,最不经常使用) 淘汰最近一段时间被访问次数最少的数据,以次数作为参考。
当存在热点数据时,LRU的效率很好,但偶发性的、周期性的批量操作会导致LRU命中率急剧下降,缓存污染情况比较严重。这时使用LFU可能更好点。 根据自身业务类型,配置好maxmemory-policy(默认是noeviction),推荐使用volatile-lru。如果不设置最大内存,当 Redis 内存超出物理内存限制时,内存的数据会开始和磁盘产生频繁的交换 (swap),会让 Redis 的性能急剧下降。 当Redis运行在主从模式时,只有主结点才会执行过期删除策略,然后把删除操作”del key”同步到从结点删除数据。