移植DM900C网卡驱动

前面一节简单分析了Linux内核网卡驱动程序的框架,并编写了一个虚拟网卡驱动程序。这一节我们开始学习网卡芯片DM9000C,尝试将官方提供的DM900C网卡驱动程序移植到jz2440开发板使用的内核里。

内核版本:Linux-3.4.2

官方网卡驱动版本:2.09


1、DM900C连接方式

DM900C和S3C2440之间的连接是以内存访问接口的方式进行连接的,连接方式如上图所示:

  • SD0~SD15:16位数据线,连接到S3C2440的16位数据线上
  • CMD命令线,连接到S3C2440的第3条地址线上
  • INT:中断引脚,接S3C2440的GPF7引脚
  • IOR#:读使能信号,接S3C2440的nOE引脚
  • IOW#:写使能信号,接S3C2440的nWE引脚
  • CS#:片选信号,接S3C2440的Bank4的片选引脚

DM9000C连接到S3C2440的bank4位置,bank4的访问区间位于0x20000000~0x28000000,当访问地址位于bank4所在的地址区间内,nGCS4片选信号被自动拉低,DM9000C芯片访问使能。至于DM9000C的具体访问地址在哪里呢?这个还需要再结合CMD命令线连接的地址线来分析。

S3C2440的地址线LADDR2连接到DM9000C的CMD引脚,我们知道CMD命令线信号状态决定对DM9000C的访问类型,当CMD为高表示SD传输的是数据,CMD为低表示传输的是地址。因此,当主控准备向DM900C写数据时,只需将要写的数据信息写入到0x20000004地址中;当主控准备向DM900C写入访问地址时,只需将要访问的地址信息写入到0x20000000地址

例如:DM9000C芯片内的28H~29H地址为厂商ID寄存器,如果我们想获取厂商ID信息,只需先向0x20000000地址中写入寄存器0x28,然后读取0x20000004地址内容,就能获取厂商ID信息。

当DM9000C收到外部数据时,会将数据存放到内部数据寄存器中,然后通过INT引脚产生一个上升沿中断,通知S3C2440读取数据信息。同样的,当DM9000C将主控传过来的数据信息发送出去后,也会通过INT引脚产生一个中断,通知主控数据已经传入完成。

2、官方驱动程序移植

修改dm900c芯片官方提供的驱动程序,使其适应自己开发板硬件,这里移植的官方驱动程序的版本是2.09

2.1 删除入口函数前的条件编译

入口函数前有个ifdef MODULE条件编译,如果未定义MODULE宏,不编译这部分。我们这里需要使用入口函数,所以删除这个ifdef宏。当然,也可以在前面使用define定义MODULE这个宏。

2.2 修改入口、出口函数名,并修饰它们

未避免和内核中的其它函数重名,修改入口、出口函数名

  init_module-->dm9000c_init

  cleanup_module-->dm9000c_exit

最后使用module_init和module_exit修饰入口和出口函数

2.3 修改驱动程序的硬件差异部分

驱动程序的硬件差异部分主要可以概括为三部分:

  • DM9000C网卡的基地址
  • 使用的中断资源
  • 根据DM9000C的芯片特性,设置S3C2440内存控制器访问时序

先来找出dm9000c的基地址在驱动程序中是在哪里描述的,从入口函数中开始进行查找。

dm9000c_init

         |----->dmfe_probe

入口函数中最终调用了dmfe_probe函数,dmfe_probe函数内容如下:

struct net_device * __init dmfe_probe(void)
{
    struct net_device *dev;
    
    ...
    dev= alloc_etherdev(sizeof(struct board_info));
    ...
    err = dmfe_probe1(dev);
    ...
    err = register_netdev(dev);
    ...
}

dmfe_probe函数中分配了net_device结构体,调用dmfe_probe函数后,最终注册了分配的net_device结构体。根据上一节的分析,可以知道net_device结构体就是为描述一个网卡设备抽象的,net_device结构体包含了网卡底层收发的函数等等,我们可以猜测dmfe_probe1函数中就是来初始化dm9000c硬件,根据硬件特性来设置net_device结构体的成员供上层使用。

(注:alloc_etherdev(sizeof(struct board_info))函数除了分配了net_device结构体外,还额外分配了一块描述board_info信息的内存,这块内存在后面会使用到)

继续来看dmfe_probe1函数

在前面DM9000C连接方式中,我们已经说过,当主控想对DM900C读写数据时,需要将想要读写访问的地址信息先写入到0x20000000地址,然后再根据是读还是去写的需求去操作0x20000004地址。如是读操作,只需读取该地址内容,如是写操作只需将写的内容写到该地址中。

上图,主控想获取DM9000的DM9KS_VID_L寄存器内容,先调用outb函数向iobase出写入寄存器地址,然后从iobase+4位置读取寄存器里的值。可以看出这个iobase变量就是我们DM9000C的基地址。

找到了保存dm9000c的基地址变量,我们需要根据硬件特性设置iobase基地址,iobase的物理地址是0x20000000。iobase基地址的设置需要在调用dmfe_probe1函数之前,这里我们在入口函数处设置,并在出口函数中取消映射

继续来看dmfe_probe1函数

① Linux-3.4.2内核中的net_device结构体中已经没有了priv成员,所以额外分配的board_info结构体内存不能使用priv访问。新内核中提供了netdev_priv函数去获取这块内存的起始地址。

(注:官方提供dm9000驱动程序中有多处使用dev->priv获取分配board_info的初始地址,这些部分都需要统一替换成netdev_priv(dev))

② 注释掉这部分内容,这句语句判断读取的dm9000芯片的版本信息不在这些给定版本内直接返回。我们的dm9000芯片版本信息可能和这些不同,但操作方式是通用的,所以取消这部分判断。

继续来看dmfe_probe1函数

① net_device的irq成员代表注册的中断号,所以irq描述中断号。这里我们这入口函数处设置irq,dm9000c的中断引脚连接s3c2440的外部中断7。

当使用了register_netdev()注册了网卡驱动net_device后,在内核中使用ifconfig就会进入net_device->open成员函数申请中断,激活队列等。

所以我们要修改open成员函数的申请中断函数,将触发中断改为“IRQF_TRIGGER_RISING”,上升沿触发

② Linux-3.4.2内核中对网卡进行操作的函数指针抽象到net_devices_ops结构体中,描述网卡设备的net_device结构体中的使用netdev_ops指针指向这部分内容,所以需要将老的接口修改成新内核的接口。

官方提供的2.09驱动程序中dm9000_hash_table中使用的net_device的mc_list、mc_count成员,在新内核的net_device结构体中都不存在了,所以还需要修改dm9000_hash_table函数。

将官方提供的dm9000_hash_table函数替换成以下内容,替换内容参考Linux-3.4.2内核自带的DM9000驱动程序中实现的

static void
dm9000_hash_table_unlocked(struct net_device *dev)
{
    board_info_t *db = netdev_priv(dev);
    struct netdev_hw_addr *ha;
    int i, oft;
    u32 hash_val;
    u16 hash_table[4];
    u8 rcr = RCR_DIS_LONG | RCR_DIS_CRC | RCR_RXEN;

    //dm9000_dbg(db, 1, "entering %s\n", __func__);

    for (i = 0, oft = DM9000_PAR; i < 6; i++, oft++)
        iow(db, oft, dev->dev_addr[i]);

    /* Clear Hash Table */
    for (i = 0; i < 4; i++)
        hash_table[i] = 0x0;

    /* broadcast address */
    hash_table[3] = 0x8000;

    if (dev->flags & IFF_PROMISC)
        rcr |= RCR_PRMSC;

    if (dev->flags & IFF_ALLMULTI)
        rcr |= RCR_ALL;

    /* the multicast address in Hash Table : 64 bits */
    netdev_for_each_mc_addr(ha, dev) {
        hash_val = ether_crc_le(6, ha->addr) & 0x3f;
        hash_table[hash_val / 16] |= (u16) 1 << (hash_val % 16);
    }

    /* Write the hash table to MAC MD table */
    for (i = 0, oft = DM9000_MAR; i < 4; i++) {
        iow(db, oft++, hash_table[i]);
        iow(db, oft++, hash_table[i] >> 8);
    }

    iow(db, DM9000_RCR, rcr);
}

static void
dm9000_hash_table(struct net_device *dev)
{
    board_info_t *db = netdev_priv(dev);
    unsigned long flags;

    spin_lock_irqsave(&db->lock, flags);
    dm9000_hash_table_unlocked(dev);
    spin_unlock_irqrestore(&db->lock, flags);
}

Linux-3.4.2内核的ethtool_ops结构体中已经删除了.get_rx_csum、set_rx_csum、.get_tx_csum、.set_tx_csim等函数指针,这里我们需要注释掉defe_ethtool_ops结构体中的.get_rx_csum、set_rx_csum、.get_tx_csum、.set_tx_csim等函数指针的设置。

根据dm9000c芯片的访问时序特性,设置s3c2440芯片内存控制器,优化访问操作。

1)设置BWSCON寄存器

  • 设置ST4=0,不使用UB/LB(UB/LB:表示高字节与低字节数据是否分开传输)
  • 设置WS4=0,其中WAIT引脚为PE4,而我们DM9000C没有引脚接入PE4,所以禁止
  • 设置DW4=0x01,我们的DM9000C的数据线为16位

2)设置BANLCON4寄存器

需参考DM9000c芯片数据手册(HCLK=100MHZ,1个时钟等于10ns)

  • 设置Tacs=0,CS和CMD可以同时结束。表示bank4地址稳定多久后,CS片选才启动
  • 设置Tcos=0,CS片选后,多久才能使能读写
  • 设置Tacc=7,11个时钟 ,access cycle ,读写使能后,多久才能访问数据
  • 设置Tcoh=1,1个时钟,因为当DM9000的写信号取消后,数据线上的数据还需要至少3ns才消失(nOE读写取消后,片选需要维持多长时间)
  • 设置Tcah=0,CS和CMD可以同时结束。表示 CS片选取消后,地址需要维持多长时间

代码如下图所示,在入口函数中设置

3、编译测试

1)编译之前,首先添加该驱动需要的内核头文件

#include <linux/interrupt.h>
#include "dm9000.h"

2)将修改的驱动程序放入到内核源码树的drivers/net/ethernet/davicom文件夹中

3)修改drivers/net/ethernet/davicom文件夹下的Makefile

4)切换到内核源码的顶层目录,指向make uImage

5)拷贝编译好的uImage文件到网络文件系统

6)在uboot中使用nfs命令将新的内核加载到内存中

nfs 0x30000000 192.168.1.100:/work/fs_digital_photo_self/uImage_net

7) bootm启动内核,查看是否能正常挂载网络文件系统

完整驱动程序

/*

  dm9ks.c: Version 2.08 2007/02/12 
  
        A Davicom DM9000/DM9010 ISA NIC fast Ethernet driver for Linux.

    This program is free software; you can redistribute it and/or
    modify it under the terms of the GNU General Public License
    as published by the Free Software Foundation; either version 2
    of the License, or (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.


  (C)Copyright 1997-2007 DAVICOM Semiconductor,Inc. All Rights Reserved.

V2.00 Spenser - 01/10/2005
            - Modification for PXA270 MAINSTONE.
            - Modified dmfe_tx_done().
            - Add dmfe_timeout().
V2.01    10/07/2005    -Modified dmfe_timer()
            -Dected network speed 10/100M
V2.02    10/12/2005    -Use link change to chage db->Speed
            -dmfe_open() wait for Link OK  
V2.03    11/22/2005    -Power-off and Power-on PHY in dmfe_init_dm9000()
            -support IOL
V2.04    12/13/2005    -delay 1.6s between power-on and power-off in 
             dmfe_init_dm9000()
            -set LED mode 1 in dmfe_init_dm9000()
            -add data bus driving capability in dmfe_init_dm9000()
             (optional)
10/3/2006    -Add DM8606 read/write function by MDC and MDIO
V2.06    01/03/2007    -CONT_RX_PKT_CNT=0xFFFF
            -modify dmfe_tx_done function
            -check RX FIFO pointer
            -if using physical address, re-define I/O function
            -add db->cont_rx_pkt_cnt=0 at the front of dmfe_packet_receive()
V2.08    02/12/2007    -module parameter macro
            2.4  MODULE_PARM
            2.6  module_param
            -remove #include <linux/config>
              -fix dmfe_interrupt for kernel 2.6.20                  
V2.09 05/24/2007    -support ethtool and mii-tool
05/30/2007    -fix the driver bug when ifconfig eth0 (-)promisc and (-)allmulti.
06/05/2007    -fix dm9000b issue(ex. 10M TX idle=65mA, 10M harmonic)
            -add flow control function (option)
10/01/2007  -Add #include <asm/uaccess.h>
            -Modyfy dmfe_do_ioctl for kernel 2.6.7
11/23/2007    -Add TDBUG to check TX FIFO pointer shift
            - Remove check_rx_ready() 
          - Add #define CHECKSUM to modify CHECKSUM function    
12/20/2007  -Modify TX timeout routine(+)check TCR&0x01 

*/

//#define CHECKSUM
//#define TDBUG        /* check TX FIFO pointer */
//#define RDBUG   /* check RX FIFO pointer */
//#define DM8606

#define DRV_NAME    "dm9KS"
#define DRV_VERSION    "2.09"
#define DRV_RELDATE    "2007-11-22"

#ifdef MODVERSIONS
#include <linux/modversions.h>
#endif

//#include <linux/config.h>
#include <linux/init.h>                
#include <linux/delay.h>
#include <linux/module.h>
#include <linux/ioport.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/version.h>
#include <asm/dma.h>
#include <linux/spinlock.h>
#include <linux/crc32.h>
#include <linux/mii.h>
#include <linux/ethtool.h>
#include <asm/uaccess.h>
#include <linux/interrupt.h>

#ifdef CONFIG_ARCH_MAINSTONE
#include <asm/io.h>
#include <asm/hardware.h>
#include <asm/irq.h>
#endif

#include "dm9000.h"

/* Board/System/Debug information/definition ---------------- */

#define DM9KS_ID        0x90000A46
#define DM9010_ID        0x90100A46
/*-------register name-----------------------*/
#define DM9KS_NCR        0x00    /* Network control Reg.*/
#define DM9KS_NSR        0x01    /* Network Status Reg.*/
#define DM9KS_TCR        0x02    /* TX control Reg.*/
#define DM9KS_RXCR        0x05    /* RX control Reg.*/
#define DM9KS_BPTR        0x08
#define DM9KS_FCTR        0x09
#define DM9KS_FCR            0x0a
#define DM9KS_EPCR        0x0b
#define DM9KS_EPAR        0x0c
#define DM9KS_EPDRL        0x0d
#define DM9KS_EPDRH        0x0e
#define DM9KS_GPR            0x1f    /* General purpose register */
#define DM9KS_CHIPR        0x2c
#define DM9KS_TCR2        0x2d
#define DM9KS_SMCR        0x2f     /* Special Mode Control Reg.*/
#define DM9KS_ETXCSR    0x30    /* Early Transmit control/status Reg.*/
#define    DM9KS_TCCR        0x31    /* Checksum cntrol Reg. */
#define DM9KS_RCSR        0x32    /* Receive Checksum status Reg.*/
#define DM9KS_BUSCR        0x38
#define DM9KS_MRCMDX    0xf0
#define DM9KS_MRCMD        0xf2
#define DM9KS_MDRAL        0xf4
#define DM9KS_MDRAH        0xf5
#define DM9KS_MWCMD        0xf8
#define DM9KS_MDWAL        0xfa
#define DM9KS_MDWAH        0xfb
#define DM9KS_TXPLL        0xfc
#define DM9KS_TXPLH        0xfd
#define DM9KS_ISR            0xfe
#define DM9KS_IMR            0xff
/*---------------------------------------------*/
#define DM9KS_REG05        0x30    /* SKIP_CRC/SKIP_LONG */ 
#define DM9KS_REGFF        0xA3    /* IMR */
#define DM9KS_DISINTR    0x80

#define DM9KS_PHY            0x40    /* PHY address 0x01 */
#define DM9KS_PKT_RDY        0x01    /* Packet ready to receive */

/* Added for PXA of MAINSTONE */
#ifdef CONFIG_ARCH_MAINSTONE
#include <asm/arch/mainstone.h>
#define DM9KS_MIN_IO        (MST_ETH_PHYS + 0x300)
#define DM9KS_MAX_IO            (MST_ETH_PHYS + 0x370)
#define DM9K_IRQ        MAINSTONE_IRQ(3)
#else
#define DM9KS_MIN_IO        0x300
#define DM9KS_MAX_IO        0x370
#define DM9KS_IRQ        3
#endif

#define DM9KS_VID_L        0x28
#define DM9KS_VID_H        0x29
#define DM9KS_PID_L        0x2A
#define DM9KS_PID_H        0x2B

#define DM9KS_RX_INTR        0x01
#define DM9KS_TX_INTR        0x02
#define DM9KS_LINK_INTR        0x20

#define DM9KS_DWORD_MODE    1
#define DM9KS_BYTE_MODE        2
#define DM9KS_WORD_MODE        0

#define TRUE            1
#define FALSE            0
/* Number of continuous Rx packets */
#define CONT_RX_PKT_CNT        0xFFFF

#define DMFE_TIMER_WUT  jiffies+(HZ*5)    /* timer wakeup time : 5 second */

#ifdef DM9KS_DEBUG
#define DMFE_DBUG(dbug_now, msg, vaule)\
if (dmfe_debug||dbug_now) printk(KERN_ERR "dmfe: %s %x\n", msg, vaule)
#else
#define DMFE_DBUG(dbug_now, msg, vaule)\
if (dbug_now) printk(KERN_ERR "dmfe: %s %x\n", msg, vaule)
#endif

#ifndef CONFIG_ARCH_MAINSTONE
#pragma pack(push, 1)
#endif

typedef struct _RX_DESC
{
    u8 rxbyte;
    u8 status;
    u16 length;
}RX_DESC;

typedef union{
    u8 buf[4];
    RX_DESC desc;
} rx_t;
#ifndef CONFIG_ARCH_MAINSTONE
#pragma pack(pop)
#endif

enum DM9KS_PHY_mode {
    DM9KS_10MHD   = 0, 
    DM9KS_100MHD  = 1, 
    DM9KS_10MFD   = 4,
    DM9KS_100MFD  = 5, 
    DM9KS_AUTO    = 8, 
};

/* Structure/enum declaration ------------------------------- */
typedef struct board_info { 
    u32 io_addr;/* Register I/O base address */
    u32 io_data;/* Data I/O address */
    u8 op_mode;/* PHY operation mode */
    u8 io_mode;/* 0:word, 2:byte */
    u8 Speed;    /* current speed */
    u8 chip_revision;
    int rx_csum;/* 0:disable, 1:enable */
    
    u32 reset_counter;/* counter: RESET */ 
    u32 reset_tx_timeout;/* RESET caused by TX Timeout */
    int tx_pkt_cnt;
    int cont_rx_pkt_cnt;/* current number of continuos rx packets  */
    struct net_device_stats stats;
    
    struct timer_list timer;
    unsigned char srom[128];
    spinlock_t lock;
    struct mii_if_info mii;
} board_info_t;
/* Global variable declaration ----------------------------- */
/*static int dmfe_debug = 0;*/
static struct net_device * dmfe_dev = NULL;
static struct ethtool_ops dmfe_ethtool_ops;
/* For module input parameter */
static int mode       = DM9KS_AUTO;  
static int media_mode = DM9KS_AUTO;
static int  irq        = DM9KS_IRQ;
static int iobase     = DM9KS_MIN_IO;

#if 0  // use physical address; Not virtual address
#ifdef outb
    #undef outb
#endif
#ifdef outw
    #undef outw
#endif
#ifdef outl
    #undef outl
#endif
#ifdef inb
    #undef inb
#endif
#ifdef inw
    #undef inw
#endif
#ifdef inl
    #undef inl
#endif
void outb(u8 reg, u32 ioaddr)
{
    (*(volatile u8 *)(ioaddr)) = reg;
}
void outw(u16 reg, u32 ioaddr)
{
    (*(volatile u16 *)(ioaddr)) = reg;
}
void outl(u32 reg, u32 ioaddr)
{
    (*(volatile u32 *)(ioaddr)) = reg;
}
u8 inb(u32 ioaddr)
{
    return (*(volatile u8 *)(ioaddr));
}
u16 inw(u32 ioaddr)
{
    return (*(volatile u16 *)(ioaddr));
}
u32 inl(u32 ioaddr)
{
    return (*(volatile u32 *)(ioaddr));
}
#endif

/* function declaration ------------------------------------- */
int dmfe_probe1(struct net_device *);
static int dmfe_open(struct net_device *);
static int dmfe_start_xmit(struct sk_buff *, struct net_device *);
static void dmfe_tx_done(unsigned long);
static void dmfe_packet_receive(struct net_device *);
static int dmfe_stop(struct net_device *);
static struct net_device_stats * dmfe_get_stats(struct net_device *); 
static int dmfe_do_ioctl(struct net_device *, struct ifreq *, int);
#if LINUX_VERSION_CODE < KERNEL_VERSION(2,5,0)
static void dmfe_interrupt(int , void *, struct pt_regs *); 
#else
    #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,19)
    static irqreturn_t dmfe_interrupt(int , void *, struct pt_regs *);
    #else
    static irqreturn_t dmfe_interrupt(int , void *);/* for kernel 2.6.20 */
    #endif
#endif
static void dmfe_timer(unsigned long);
static void dmfe_init_dm9000(struct net_device *);
static unsigned long cal_CRC(unsigned char *, unsigned int, u8);
u8 ior(board_info_t *, int);
void iow(board_info_t *, int, u8);
static u16 phy_read(board_info_t *, int);
static void phy_write(board_info_t *, int, u16);
static u16 read_srom_word(board_info_t *, int);
static void dm9000_hash_table(struct net_device *);
static void dmfe_timeout(struct net_device *);
static void dmfe_reset(struct net_device *);
static int mdio_read(struct net_device *, int, int);
static void mdio_write(struct net_device *, int, int, int);
static void dmfe_get_drvinfo(struct net_device *, struct ethtool_drvinfo *);
static int dmfe_get_settings(struct net_device *, struct ethtool_cmd *);
static int dmfe_set_settings(struct net_device *, struct ethtool_cmd *);
static u32 dmfe_get_link(struct net_device *);
static int dmfe_nway_reset(struct net_device *);
static uint32_t dmfe_get_rx_csum(struct net_device *);
static uint32_t dmfe_get_tx_csum(struct net_device *);
static int dmfe_set_rx_csum(struct net_device *, uint32_t );
static int dmfe_set_tx_csum(struct net_device *, uint32_t );

#ifdef DM8606
#include "dm8606.h"
#endif

//DECLARE_TASKLET(dmfe_tx_tasklet,dmfe_tx_done,0);

/* DM9000 network baord routine ---------------------------- */

/*
  Search DM9000 board, allocate space and register it
*/

struct net_device * __init dmfe_probe(void)
{
    struct net_device *dev;
    int err;
    
    DMFE_DBUG(0, "dmfe_probe()",0);

#if LINUX_VERSION_CODE < KERNEL_VERSION(2,5,0)
    dev = init_etherdev(NULL, sizeof(struct board_info));
    //ether_setup(dev);        
#else
    dev= alloc_etherdev(sizeof(struct board_info));
#endif

    if(!dev)
        return ERR_PTR(-ENOMEM);

    //     SET_MODULE_OWNER(dev);
    err = dmfe_probe1(dev);
    if (err)
        goto out;
#if LINUX_VERSION_CODE > KERNEL_VERSION(2,5,0)
    err = register_netdev(dev);
    if (err)
        goto out1;
#endif
    return dev;
out1:
    release_region(dev->base_addr,2);
out:
#if LINUX_VERSION_CODE < KERNEL_VERSION(2,5,0)
    kfree(dev);
#else
    free_netdev(dev);
#endif
    return ERR_PTR(err);
}

static const struct net_device_ops dm9000c_netdev_ops = {
    .ndo_open        = dmfe_open,
    .ndo_stop        = dmfe_stop,
    .ndo_start_xmit        = dmfe_start_xmit,
    .ndo_tx_timeout        = dmfe_timeout,
    .ndo_set_rx_mode    = dm9000_hash_table,
    .ndo_do_ioctl        = dmfe_do_ioctl,
    .ndo_change_mtu        = eth_change_mtu,
    .ndo_get_stats      = dmfe_get_stats,
    //.ndo_set_features    = dm9000_set_features,
    .ndo_validate_addr    = eth_validate_addr,
    .ndo_set_mac_address    = eth_mac_addr,
#ifdef CONFIG_NET_POLL_CONTROLLER
    .ndo_poll_controller    = dm9000_poll_controller,
#endif
};


int __init dmfe_probe1(struct net_device *dev)
{
    struct board_info *db;    /* Point a board information structure */
    u32 id_val;
    u16 i, dm9000_found = FALSE;
    u8 MAC_addr[6]={0x00,0x60,0x6E,0x33,0x44,0x55};
    u8 HasEEPROM=0,chip_info;
    DMFE_DBUG(0, "dmfe_probe1()",0);

    /* Search All DM9000 serial NIC */
    do {
        outb(DM9KS_VID_L, iobase);
        id_val = inb(iobase + 4);
        outb(DM9KS_VID_H, iobase);
        id_val |= inb(iobase + 4) << 8;
        outb(DM9KS_PID_L, iobase);
        id_val |= inb(iobase + 4) << 16;
        outb(DM9KS_PID_H, iobase);
        id_val |= inb(iobase + 4) << 24;

        if (id_val == DM9KS_ID || id_val == DM9010_ID) {
            
            /* Request IO from system */
            if(!request_region(iobase, 2, dev->name))
                return -ENODEV;

            printk(KERN_ERR"<DM9KS> I/O: %x, VID: %x \n",iobase, id_val);
            dm9000_found = TRUE;

            /* Allocated board information structure */
            db = netdev_priv(dev);
            memset(db, 0, sizeof(struct board_info));
            
            dmfe_dev    = dev;
            db->io_addr  = iobase;
            db->io_data = iobase + 4;   
            db->chip_revision = ior(db, DM9KS_CHIPR);
            
            chip_info = ior(db,0x43);
            //if((db->chip_revision!=0x1A) || ((chip_info&(1<<5))!=0) || ((chip_info&(1<<2))!=1)) return -ENODEV;
                        
            /* driver system function */        
            dev->netdev_ops    = &dm9000c_netdev_ops;
            
            dev->base_addr         = iobase;
            dev->irq         = irq;
            //dev->open         = &dmfe_open;
            //dev->hard_start_xmit     = &dmfe_start_xmit;
            dev->watchdog_timeo    = 5*HZ;    
            //dev->tx_timeout        = dmfe_timeout;
            //dev->stop         = &dmfe_stop;
            //dev->get_stats         = &dmfe_get_stats;
            //dev->set_multicast_list = &dm9000_hash_table;
            //dev->do_ioctl         = &dmfe_do_ioctl;
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,4,28)
            dev->ethtool_ops = &dmfe_ethtool_ops;
#endif
#ifdef CHECKSUM
            //dev->features |=  NETIF_F_IP_CSUM;
            dev->features |=  NETIF_F_IP_CSUM|NETIF_F_SG;
#endif
            db->mii.dev = dev;
            db->mii.mdio_read = mdio_read;
            db->mii.mdio_write = mdio_write;
            db->mii.phy_id = 1;
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,4,20)
            db->mii.phy_id_mask = 0x1F; 
            db->mii.reg_num_mask = 0x1F; 
#endif
            //db->msg_enable =(debug == 0 ? DMFE_DEF_MSG_ENABLE : ((1 << debug) - 1));
            
            /* Read SROM content */
            for (i=0; i<64; i++)
                ((u16 *)db->srom)[i] = read_srom_word(db, i);

            /* Get the PID and VID from EEPROM to check */
            id_val = (((u16 *)db->srom)[4])|(((u16 *)db->srom)[5]<<16); 
            printk("id_val=%x\n", id_val);
            if (id_val == DM9KS_ID || id_val == DM9010_ID) 
                HasEEPROM =1;
            
            /* Set Node Address */
            for (i=0; i<6; i++)
            {
                if (HasEEPROM) /* use EEPROM */
                    dev->dev_addr[i] = db->srom[i];
                else    /* No EEPROM */
                    dev->dev_addr[i] = MAC_addr[i];
            }
        }//end of if()
        iobase += 0x10;
    }while(!dm9000_found && iobase <= DM9KS_MAX_IO);

    return dm9000_found ? 0:-ENODEV;
}


/*
  Open the interface.
  The interface is opened whenever "ifconfig" actives it.
*/
static int dmfe_open(struct net_device *dev)
{
    board_info_t *db = netdev_priv(dev);
    u8 reg_nsr;
    int i;
    DMFE_DBUG(0, "dmfe_open", 0);

    if (request_irq(dev->irq,&dmfe_interrupt,IRQF_TRIGGER_RISING,dev->name,dev)) 
        return -EAGAIN;

    /* Initilize DM910X board */
    dmfe_init_dm9000(dev);
#ifdef DM8606
    // control DM8606
    printk("[8606]reg0=0x%04x\n",dm8606_read(db,0));
    printk("[8606]reg1=0x%04x\n",dm8606_read(db,0x1));
#endif 
    /* Init driver variable */
    db->reset_counter     = 0;
    db->reset_tx_timeout     = 0;
    db->cont_rx_pkt_cnt    = 0;
    
    /* check link state and media speed */
    db->Speed =10;
    i=0;
    do {
        reg_nsr = ior(db,DM9KS_NSR);
        if(reg_nsr & 0x40) /* link OK!! */
        {
            /* wait for detected Speed */
            mdelay(200);
            reg_nsr = ior(db,DM9KS_NSR);
            if(reg_nsr & 0x80)
                db->Speed =10;
            else
                db->Speed =100;
            break;
        }
        i++;
        mdelay(1);
    }while(i<3000);    /* wait 3 second  */
    //printk("i=%d  Speed=%d\n",i,db->Speed);    
    /* set and active a timer process */
    init_timer(&db->timer);
    db->timer.expires     = DMFE_TIMER_WUT;
    db->timer.data         = (unsigned long)dev;
    db->timer.function     = &dmfe_timer;
    add_timer(&db->timer);    //Move to DM9000 initiallization was finished.
     
    netif_start_queue(dev);

    return 0;
}

/* Set PHY operationg mode
*/
static void set_PHY_mode(board_info_t *db)
{
#ifndef DM8606
    u16 phy_reg0 = 0x1000;/* Auto-negotiation*/
    u16 phy_reg4 = 0x01e1;

    if ( !(db->op_mode & DM9KS_AUTO) ) // op_mode didn't auto sense */
    { 
        switch(db->op_mode) {
            case DM9KS_10MHD:  phy_reg4 = 0x21; 
                                       phy_reg0 = 0x1000;
                       break;
            case DM9KS_10MFD:  phy_reg4 = 0x41; 
                       phy_reg0 = 0x1100;
                                       break;
            case DM9KS_100MHD: phy_reg4 = 0x81; 
                       phy_reg0 = 0x3000;
                           break;
            case DM9KS_100MFD: phy_reg4 = 0x101; 
                       phy_reg0 = 0x3100;
                          break;
            default: 
                       break;
        } // end of switch
    } // end of if
#ifdef FLOW_CONTROL
    phy_write(db, 4, phy_reg4|(1<<10));
#else
    phy_write(db, 4, phy_reg4);
#endif //end of FLOW_CONTROL
    phy_write(db, 0, phy_reg0|0x200);
#else
    /* Fiber mode */
    phy_write(db, 16, 0x4014);
    phy_write(db, 0, 0x2100);
#endif //end of DM8606

    if (db->chip_revision == 0x1A)
    {
        //set 10M TX idle =65mA (TX 100% utility is 160mA)
        phy_write(db,20, phy_read(db,20)|(1<<11)|(1<<10));
        
        //:fix harmonic
        //For short code:
        //PHY_REG 27 (1Bh) <- 0000h
        phy_write(db, 27, 0x0000);
        //PHY_REG 27 (1Bh) <- AA00h
        phy_write(db, 27, 0xaa00);

        //PHY_REG 27 (1Bh) <- 0017h
        phy_write(db, 27, 0x0017);
        //PHY_REG 27 (1Bh) <- AA17h
        phy_write(db, 27, 0xaa17);

        //PHY_REG 27 (1Bh) <- 002Fh
        phy_write(db, 27, 0x002f);
        //PHY_REG 27 (1Bh) <- AA2Fh
        phy_write(db, 27, 0xaa2f);
        
        //PHY_REG 27 (1Bh) <- 0037h
        phy_write(db, 27, 0x0037);
        //PHY_REG 27 (1Bh) <- AA37h
        phy_write(db, 27, 0xaa37);
        
        //PHY_REG 27 (1Bh) <- 0040h
        phy_write(db, 27, 0x0040);
        //PHY_REG 27 (1Bh) <- AA40h
        phy_write(db, 27, 0xaa40);
        
        //For long code:
        //PHY_REG 27 (1Bh) <- 0050h
        phy_write(db, 27, 0x0050);
        //PHY_REG 27 (1Bh) <- AA50h
        phy_write(db, 27, 0xaa50);
        
        //PHY_REG 27 (1Bh) <- 006Bh
        phy_write(db, 27, 0x006b);
        //PHY_REG 27 (1Bh) <- AA6Bh
        phy_write(db, 27, 0xaa6b);
        
        //PHY_REG 27 (1Bh) <- 007Dh
        phy_write(db, 27, 0x007d);
        //PHY_REG 27 (1Bh) <- AA7Dh
        phy_write(db, 27, 0xaa7d);
        
        //PHY_REG 27 (1Bh) <- 008Dh
        phy_write(db, 27, 0x008d);
        //PHY_REG 27 (1Bh) <- AA8Dh
        phy_write(db, 27, 0xaa8d);
        
        //PHY_REG 27 (1Bh) <- 009Ch
        phy_write(db, 27, 0x009c);
        //PHY_REG 27 (1Bh) <- AA9Ch
        phy_write(db, 27, 0xaa9c);
        
        //PHY_REG 27 (1Bh) <- 00A3h
        phy_write(db, 27, 0x00a3);
        //PHY_REG 27 (1Bh) <- AAA3h
        phy_write(db, 27, 0xaaa3);
        
        //PHY_REG 27 (1Bh) <- 00B1h
        phy_write(db, 27, 0x00b1);
        //PHY_REG 27 (1Bh) <- AAB1h
        phy_write(db, 27, 0xaab1);
        
        //PHY_REG 27 (1Bh) <- 00C0h
        phy_write(db, 27, 0x00c0);
        //PHY_REG 27 (1Bh) <- AAC0h
        phy_write(db, 27, 0xaac0);
        
        //PHY_REG 27 (1Bh) <- 00D2h
        phy_write(db, 27, 0x00d2);
        //PHY_REG 27 (1Bh) <- AAD2h
        phy_write(db, 27, 0xaad2);
        
        //PHY_REG 27 (1Bh) <- 00E0h
        phy_write(db, 27, 0x00e0);
        //PHY_REG 27 (1Bh) <- AAE0h
        phy_write(db, 27, 0xaae0);
        //PHY_REG 27 (1Bh) <- 0000h
        phy_write(db, 27, 0x0000);
    }
}

/* 
    Initilize dm9000 board
*/
static void dmfe_init_dm9000(struct net_device *dev)
{
    board_info_t *db = netdev_priv(dev);
    DMFE_DBUG(0, "dmfe_init_dm9000()", 0);

    spin_lock_init(&db->lock);
    
    iow(db, DM9KS_GPR, 0);    /* GPR (reg_1Fh)bit GPIO0=0 pre-activate PHY */
    mdelay(20);        /* wait for PHY power-on ready */

    /* do a software reset and wait 20us */
    iow(db, DM9KS_NCR, 3);
    udelay(20);        /* wait 20us at least for software reset ok */
    iow(db, DM9KS_NCR, 3);    /* NCR (reg_00h) bit[0] RST=1 & Loopback=1, reset on */
    udelay(20);        /* wait 20us at least for software reset ok */

    /* I/O mode */
    db->io_mode = ior(db, DM9KS_ISR) >> 6; /* ISR bit7:6 keeps I/O mode */

    /* Set PHY */
    db->op_mode = media_mode;
    set_PHY_mode(db);

    /* Program operating register */
    iow(db, DM9KS_NCR, 0);
    iow(db, DM9KS_TCR, 0);        /* TX Polling clear */
    iow(db, DM9KS_BPTR, 0x3f);    /* Less 3kb, 600us */
    iow(db, DM9KS_SMCR, 0);        /* Special Mode */
    iow(db, DM9KS_NSR, 0x2c);    /* clear TX status */
    iow(db, DM9KS_ISR, 0x0f);     /* Clear interrupt status */
    iow(db, DM9KS_TCR2, 0x80);    /* Set LED mode 1 */
    if (db->chip_revision == 0x1A){ 
        /* Data bus current driving/sinking capability  */
        iow(db, DM9KS_BUSCR, 0x01);    /* default: 2mA */
    }
#ifdef FLOW_CONTROL
    iow(db, DM9KS_BPTR, 0x37);
    iow(db, DM9KS_FCTR, 0x38);
    iow(db, DM9KS_FCR, 0x29);
#endif

#ifdef DM8606
    iow(db,0x34,1);
#endif

    if (dev->features & NETIF_F_HW_CSUM){
        printk(KERN_INFO "DM9KS:enable TX checksum\n");
        iow(db, DM9KS_TCCR, 0x07);    /* TX UDP/TCP/IP checksum enable */
    }
    if (db->rx_csum){
        printk(KERN_INFO "DM9KS:enable RX checksum\n");
        iow(db, DM9KS_RCSR, 0x02);    /* RX checksum enable */
    }

#ifdef ETRANS
    /*If TX loading is heavy, the driver can try to anbel "early transmit".
    The programmer can tune the "Early Transmit Threshold" to get 
    the optimization. (DM9KS_ETXCSR.[1-0])
    
    Side Effect: It will happen "Transmit under-run". When TX under-run
    always happens, the programmer can increase the value of "Early 
    Transmit Threshold". */
    iow(db, DM9KS_ETXCSR, 0x83);
#endif
 
    /* Set address filter table */
    dm9000_hash_table(dev);

    /* Activate DM9000/DM9010 */
    iow(db, DM9KS_IMR, DM9KS_REGFF); /* Enable TX/RX interrupt mask */
    iow(db, DM9KS_RXCR, DM9KS_REG05 | 1);    /* RX enable */
    
    /* Init Driver variable */
    db->tx_pkt_cnt         = 0;
        
    netif_carrier_on(dev);

}

/*
  Hardware start transmission.
  Send a packet to media from the upper layer.
*/
static int dmfe_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
    board_info_t *db = netdev_priv(dev);
    char * data_ptr;
    int i, tmplen;
    u16 MDWAH, MDWAL;
    
    #ifdef TDBUG /* check TX FIFO pointer */
            u16 MDWAH1, MDWAL1;
            u16 tx_ptr;
    #endif
    
    DMFE_DBUG(0, "dmfe_start_xmit", 0);
    if (db->chip_revision != 0x1A)
    {    
        if(db->Speed == 10)
            {if (db->tx_pkt_cnt >= 1) return 1;}
        else
            {if (db->tx_pkt_cnt >= 2) return 1;}
    }else
        if (db->tx_pkt_cnt >= 2) return 1;
    
    /* packet counting */
    db->tx_pkt_cnt++;

    db->stats.tx_packets++;
    db->stats.tx_bytes+=skb->len;
    if (db->chip_revision != 0x1A)
    {
        if (db->Speed == 10)
            {if (db->tx_pkt_cnt >= 1) netif_stop_queue(dev);}
        else
            {if (db->tx_pkt_cnt >= 2) netif_stop_queue(dev);}
    }else
        if (db->tx_pkt_cnt >= 2) netif_stop_queue(dev);        

    /* Disable all interrupt */
    iow(db, DM9KS_IMR, DM9KS_DISINTR);

    MDWAH = ior(db,DM9KS_MDWAH);
    MDWAL = ior(db,DM9KS_MDWAL);

    /* Set TX length to reg. 0xfc & 0xfd */
    iow(db, DM9KS_TXPLL, (skb->len & 0xff));
    iow(db, DM9KS_TXPLH, (skb->len >> 8) & 0xff);

    /* Move data to TX SRAM */
    data_ptr = (char *)skb->data;
    
    outb(DM9KS_MWCMD, db->io_addr); // Write data into SRAM trigger
    switch(db->io_mode)
    {
        case DM9KS_BYTE_MODE:
            for (i = 0; i < skb->len; i++)
                outb((data_ptr[i] & 0xff), db->io_data);
            break;
        case DM9KS_WORD_MODE:
            tmplen = (skb->len + 1) / 2;
            for (i = 0; i < tmplen; i++)
        outw(((u16 *)data_ptr)[i], db->io_data);
      break;
    case DM9KS_DWORD_MODE:
      tmplen = (skb->len + 3) / 4;            
            for (i = 0; i< tmplen; i++)
                outl(((u32 *)data_ptr)[i], db->io_data);
            break;
    }
    
#ifndef ETRANS
    /* Issue TX polling command */
    iow(db, DM9KS_TCR, 0x1); /* Cleared after TX complete*/
#endif

    #ifdef TDBUG /* check TX FIFO pointer */
            MDWAH1 = ior(db,DM9KS_MDWAH);
            MDWAL1 = ior(db,DM9KS_MDWAL);
            tx_ptr = (MDWAH<<8)|MDWAL;
            switch (db->io_mode)
            {
                case DM9KS_BYTE_MODE:
                    tx_ptr += skb->len;
                    break;
                case DM9KS_WORD_MODE:
                    tx_ptr += ((skb->len + 1) / 2)*2;
                    break;
                case DM9KS_DWORD_MODE:
                    tx_ptr += ((skb->len+3)/4)*4;
                    break;
            }
            if (tx_ptr > 0x0bff)
                    tx_ptr -= 0x0c00;
            if (tx_ptr != ((MDWAH1<<8)|MDWAL1))
                    printk("[dm9ks:TX FIFO ERROR\n");
    #endif
    /* Saved the time stamp */
    dev->trans_start = jiffies;
    db->cont_rx_pkt_cnt =0;

    /* Free this SKB */
    dev_kfree_skb(skb);

    /* Re-enable interrupt */
    iow(db, DM9KS_IMR, DM9KS_REGFF);

    return 0;
}

/*
  Stop the interface.
  The interface is stopped when it is brought.
*/
static int dmfe_stop(struct net_device *dev)
{
    board_info_t *db = netdev_priv(dev);
    DMFE_DBUG(0, "dmfe_stop", 0);

    /* deleted timer */
    del_timer(&db->timer);

    netif_stop_queue(dev); 

    /* free interrupt */
    free_irq(dev->irq, dev);

    /* RESET devie */
    phy_write(db, 0x00, 0x8000);    /* PHY RESET */
    //iow(db, DM9KS_GPR, 0x01);     /* Power-Down PHY */
    iow(db, DM9KS_IMR, DM9KS_DISINTR);    /* Disable all interrupt */
    iow(db, DM9KS_RXCR, 0x00);    /* Disable RX */

    /* Dump Statistic counter */
#if FALSE
    printk("\nRX FIFO OVERFLOW %lx\n", db->stats.rx_fifo_errors);
    printk("RX CRC %lx\n", db->stats.rx_crc_errors);
    printk("RX LEN Err %lx\n", db->stats.rx_length_errors);
    printk("RESET %x\n", db->reset_counter);
    printk("RESET: TX Timeout %x\n", db->reset_tx_timeout);
    printk("g_TX_nsr %x\n", g_TX_nsr);
#endif

    return 0;
}

static void dmfe_tx_done(unsigned long unused)
{
    struct net_device *dev = dmfe_dev;
    board_info_t *db = netdev_priv(dev);
    int  nsr;

    DMFE_DBUG(0, "dmfe_tx_done()", 0);
    
    nsr = ior(db, DM9KS_NSR);
    if (nsr & 0x0c)
    {
        if(nsr & 0x04) db->tx_pkt_cnt--;
        if(nsr & 0x08) db->tx_pkt_cnt--;
        if(db->tx_pkt_cnt < 0)
        {
            printk(KERN_DEBUG "DM9KS:tx_pkt_cnt ERROR!!\n");
            while(ior(db,DM9KS_TCR) & 0x1){}
            db->tx_pkt_cnt = 0;
        }
            
    }else{
        while(ior(db,DM9KS_TCR) & 0x1){}
        db->tx_pkt_cnt = 0;
    }
        
    netif_wake_queue(dev);
    
    return;
}

/*
  DM9000 insterrupt handler
  receive the packet to upper layer, free the transmitted packet
*/
#if LINUX_VERSION_CODE < KERNEL_VERSION(2,5,0)
static void dmfe_interrupt(int irq, void *dev_id, struct pt_regs *regs)
#else
    #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,19)
    static irqreturn_t dmfe_interrupt(int irq, void *dev_id, struct pt_regs *regs)
    #else
    static irqreturn_t dmfe_interrupt(int irq, void *dev_id) /* for kernel 2.6.20*/
    #endif
#endif
{
    struct net_device *dev = dev_id;
    board_info_t *db;
    int int_status,i;
    u8 reg_save;

    DMFE_DBUG(0, "dmfe_interrupt()", 0);

    /* A real interrupt coming */
    db = netdev_priv(dev);
    spin_lock(&db->lock);

    /* Save previous register address */
    reg_save = inb(db->io_addr);

    /* Disable all interrupt */
    iow(db, DM9KS_IMR, DM9KS_DISINTR); 

    /* Got DM9000/DM9010 interrupt status */
    int_status = ior(db, DM9KS_ISR);        /* Got ISR */
    iow(db, DM9KS_ISR, int_status);        /* Clear ISR status */ 

    /* Link status change */
    if (int_status & DM9KS_LINK_INTR) 
    {
        netif_stop_queue(dev);
        for(i=0; i<500; i++) /*wait link OK, waiting time =0.5s */
        {
            phy_read(db,0x1);
            if(phy_read(db,0x1) & 0x4) /*Link OK*/
            {
                /* wait for detected Speed */
                for(i=0; i<200;i++)
                    udelay(1000);
                /* set media speed */
                if(phy_read(db,0)&0x2000) db->Speed =100;
                else db->Speed =10;
                break;
            }
            udelay(1000);
        }
        netif_wake_queue(dev);
        //printk("[INTR]i=%d speed=%d\n",i, (int)(db->Speed));    
    }
    /* Received the coming packet */
    if (int_status & DM9KS_RX_INTR) 
        dmfe_packet_receive(dev);

    /* Trnasmit Interrupt check */
    if (int_status & DM9KS_TX_INTR)
        dmfe_tx_done(0);
    
    if (db->cont_rx_pkt_cnt>=CONT_RX_PKT_CNT)
    {
        iow(db, DM9KS_IMR, 0xa2);
    }
    else
    {
        /* Re-enable interrupt mask */ 
        iow(db, DM9KS_IMR, DM9KS_REGFF);
    }
    
    /* Restore previous register address */
    outb(reg_save, db->io_addr); 

    spin_unlock(&db->lock); 
#if LINUX_VERSION_CODE > KERNEL_VERSION(2,5,0)
    return IRQ_HANDLED;
#endif
}

/*
  Get statistics from driver.
*/
static struct net_device_stats * dmfe_get_stats(struct net_device *dev)
{
    board_info_t *db = netdev_priv(dev);
    DMFE_DBUG(0, "dmfe_get_stats", 0);
    return &db->stats;
}
/*
 *    Process the ethtool ioctl command
 */
static int dmfe_ethtool_ioctl(struct net_device *dev, void *useraddr)
{
    //struct dmfe_board_info *db = dev->priv;
    struct ethtool_drvinfo info = { ETHTOOL_GDRVINFO };
    u32 ethcmd;

    if (copy_from_user(&ethcmd, useraddr, sizeof(ethcmd)))
        return -EFAULT;

    switch (ethcmd) 
    {
        case ETHTOOL_GDRVINFO:
            strcpy(info.driver, DRV_NAME);
            strcpy(info.version, DRV_VERSION);

            sprintf(info.bus_info, "ISA 0x%lx %d",dev->base_addr, dev->irq);
            if (copy_to_user(useraddr, &info, sizeof(info)))
                return -EFAULT;
            return 0;
    }

    return -EOPNOTSUPP;
}
/*
  Process the upper socket ioctl command
*/
static int dmfe_do_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
{
    board_info_t *db = netdev_priv(dev);
    #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,7) /* for kernel 2.6.7 */
    struct mii_ioctl_data *data=(struct mii_ioctl_data *)&ifr->ifr_data; 
    #endif
  int rc=0;
        
    DMFE_DBUG(0, "dmfe_do_ioctl()", 0);
    
        if (!netif_running(dev))
            return -EINVAL;

        if (cmd == SIOCETHTOOL)
        rc = dmfe_ethtool_ioctl(dev, (void *) ifr->ifr_data);
    else {
        spin_lock_irq(&db->lock);
        #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,7) /* for kernel 2.6.7 */
            rc = generic_mii_ioctl(&db->mii, data, cmd, NULL);
        #else
            rc = generic_mii_ioctl(&db->mii, if_mii(ifr), cmd, NULL);
        #endif
        spin_unlock_irq(&db->lock);
    }

    return rc;
}

/* Our watchdog timed out. Called by the networking layer */
static void dmfe_timeout(struct net_device *dev)
{
    board_info_t *db = netdev_priv(dev);
    int i;
    
    DMFE_DBUG(0, "dmfe_TX_timeout()", 0);
    printk("TX time-out -- dmfe_timeout().\n");
    db->reset_tx_timeout++;
    db->stats.tx_errors++;
    
#if FALSE
    printk("TX packet count = %d\n", db->tx_pkt_cnt);    
    printk("TX timeout = %d\n", db->reset_tx_timeout);    
    printk("22H=0x%02x  23H=0x%02x\n",ior(db,0x22),ior(db,0x23));
    printk("faH=0x%02x  fbH=0x%02x\n",ior(db,0xfa),ior(db,0xfb));
#endif

    i=0;

    while((i++<100)&&(ior(db,DM9KS_TCR) & 0x01))
    {
        udelay(30);
    }
        
    if(i<100)
    {
            db->tx_pkt_cnt = 0;
            netif_wake_queue(dev);
    }
    else
    {
            dmfe_reset(dev);
    }

}

static void dmfe_reset(struct net_device * dev)
{
    board_info_t *db = netdev_priv(dev);
    u8 reg_save;
    int i;
    /* Save previous register address */
    reg_save = inb(db->io_addr);

    netif_stop_queue(dev); 
    db->reset_counter++;
    dmfe_init_dm9000(dev);
    
    db->Speed =10;
    for(i=0; i<1000; i++) /*wait link OK, waiting time=1 second */
    {
        if(phy_read(db,0x1) & 0x4) /*Link OK*/
        {
            if(phy_read(db,0)&0x2000) db->Speed =100;
            else db->Speed =10;
            break;
        }
        udelay(1000);
    }
    
    netif_wake_queue(dev);
    
    /* Restore previous register address */
    outb(reg_save, db->io_addr);

}
/*
  A periodic timer routine
*/
static void dmfe_timer(unsigned long data)
{
    struct net_device * dev = (struct net_device *)data;
    board_info_t *db = netdev_priv(dev);
    DMFE_DBUG(0, "dmfe_timer()", 0);
    
    if (db->cont_rx_pkt_cnt>=CONT_RX_PKT_CNT)
    {
        db->cont_rx_pkt_cnt=0;
        iow(db, DM9KS_IMR, DM9KS_REGFF);
    }
    /* Set timer again */
    db->timer.expires = DMFE_TIMER_WUT;
    add_timer(&db->timer);
    
    return;
}


/*
  Received a packet and pass to upper layer
*/
static void dmfe_packet_receive(struct net_device *dev)
{
    board_info_t *db = netdev_priv(dev);
    struct sk_buff *skb;
    u8 rxbyte;
    u16 i, GoodPacket, tmplen = 0, MDRAH, MDRAL;
    u32 tmpdata;

    rx_t rx;

    u16 * ptr = (u16*)&rx;
    u8* rdptr;

    DMFE_DBUG(0, "dmfe_packet_receive()", 0);

    db->cont_rx_pkt_cnt=0;
    
    do {
        /*store the value of Memory Data Read address register*/
        MDRAH=ior(db, DM9KS_MDRAH);
        MDRAL=ior(db, DM9KS_MDRAL);
        
        ior(db, DM9KS_MRCMDX);        /* Dummy read */
        rxbyte = inb(db->io_data);    /* Got most updated data */

#ifdef CHECKSUM    
        if (rxbyte&0x2)            /* check RX byte */
        {    
      printk("dm9ks: abnormal!\n");
            dmfe_reset(dev); 
            break;    
    }else { 
      if (!(rxbyte&0x1))
                break;    
    }        
#else
        if (rxbyte==0)
            break;
        
        if (rxbyte>1)
        {    
      printk("dm9ks: Rxbyte error!\n");
          dmfe_reset(dev);
      break;    
    }
#endif

        /* A packet ready now  & Get status/length */
        GoodPacket = TRUE;
        outb(DM9KS_MRCMD, db->io_addr);

        /* Read packet status & length */
        switch (db->io_mode) 
            {
              case DM9KS_BYTE_MODE: 
                     *ptr = inb(db->io_data) + 
                               (inb(db->io_data) << 8);
                    *(ptr+1) = inb(db->io_data) + 
                        (inb(db->io_data) << 8);
                    break;
              case DM9KS_WORD_MODE:
                    *ptr = inw(db->io_data);
                    *(ptr+1)    = inw(db->io_data);
                    break;
              case DM9KS_DWORD_MODE:
                    tmpdata  = inl(db->io_data);
                    *ptr = tmpdata;
                    *(ptr+1)    = tmpdata >> 16;
                    break;
              default:
                    break;
            }

        /* Packet status check */
        if (rx.desc.status & 0xbf)
        {
            GoodPacket = FALSE;
            if (rx.desc.status & 0x01) 
            {
                db->stats.rx_fifo_errors++;
                printk(KERN_INFO"<RX FIFO error>\n");
            }
            if (rx.desc.status & 0x02) 
            {
                db->stats.rx_crc_errors++;
                printk(KERN_INFO"<RX CRC error>\n");
            }
            if (rx.desc.status & 0x80) 
            {
                db->stats.rx_length_errors++;
                printk(KERN_INFO"<RX Length error>\n");
            }
            if (rx.desc.status & 0x08)
                printk(KERN_INFO"<Physical Layer error>\n");
        }

        if (!GoodPacket)
        {
            // drop this packet!!!
            switch (db->io_mode)
            {
                case DM9KS_BYTE_MODE:
                     for (i=0; i<rx.desc.length; i++)
                        inb(db->io_data);
                    break;
                case DM9KS_WORD_MODE:
                    tmplen = (rx.desc.length + 1) / 2;
                    for (i = 0; i < tmplen; i++)
                        inw(db->io_data);
                    break;
                case DM9KS_DWORD_MODE:
                    tmplen = (rx.desc.length + 3) / 4;
                    for (i = 0; i < tmplen; i++)
                        inl(db->io_data);
                    break;
            }
            continue;/*next the packet*/
        }
        
        skb = dev_alloc_skb(rx.desc.length+4);
        if (skb == NULL )
        {    
            printk(KERN_INFO "%s: Memory squeeze.\n", dev->name);
            /*re-load the value into Memory data read address register*/
            iow(db,DM9KS_MDRAH,MDRAH);
            iow(db,DM9KS_MDRAL,MDRAL);
            return;
        }
        else
        {
            /* Move data from DM9000 */
            skb->dev = dev;
            skb_reserve(skb, 2);
            rdptr = (u8*)skb_put(skb, rx.desc.length - 4);
            
            /* Read received packet from RX SARM */
            switch (db->io_mode)
            {
                case DM9KS_BYTE_MODE:
                     for (i=0; i<rx.desc.length; i++)
                        rdptr[i]=inb(db->io_data);
                    break;
                case DM9KS_WORD_MODE:
                    tmplen = (rx.desc.length + 1) / 2;
                    for (i = 0; i < tmplen; i++)
                        ((u16 *)rdptr)[i] = inw(db->io_data);
                    break;
                case DM9KS_DWORD_MODE:
                    tmplen = (rx.desc.length + 3) / 4;
                    for (i = 0; i < tmplen; i++)
                        ((u32 *)rdptr)[i] = inl(db->io_data);
                    break;
            }
        
            /* Pass to upper layer */
            skb->protocol = eth_type_trans(skb,dev);

#ifdef CHECKSUM
        if((rxbyte&0xe0)==0)    /* receive packet no checksum fail */
                skb->ip_summed = CHECKSUM_UNNECESSARY;
#endif
        
            netif_rx(skb);
            dev->last_rx=jiffies;
            db->stats.rx_packets++;
            db->stats.rx_bytes += rx.desc.length;
            db->cont_rx_pkt_cnt++;
#ifdef RDBG /* check RX FIFO pointer */
            u16 MDRAH1, MDRAL1;
            u16 tmp_ptr;
            MDRAH1 = ior(db,DM9KS_MDRAH);
            MDRAL1 = ior(db,DM9KS_MDRAL);
            tmp_ptr = (MDRAH<<8)|MDRAL;
            switch (db->io_mode)
            {
                case DM9KS_BYTE_MODE:
                    tmp_ptr += rx.desc.length+4;
                    break;
                case DM9KS_WORD_MODE:
                    tmp_ptr += ((rx.desc.length+1)/2)*2+4;
                    break;
                case DM9KS_DWORD_MODE:
                    tmp_ptr += ((rx.desc.length+3)/4)*4+4;
                    break;
            }
            if (tmp_ptr >=0x4000)
                tmp_ptr = (tmp_ptr - 0x4000) + 0xc00;
            if (tmp_ptr != ((MDRAH1<<8)|MDRAL1))
                printk("[dm9ks:RX FIFO ERROR\n");
#endif
                
            if (db->cont_rx_pkt_cnt>=CONT_RX_PKT_CNT)
            {
                dmfe_tx_done(0);
                break;
            }
        }
            
    }while((rxbyte & 0x01) == DM9KS_PKT_RDY);
    DMFE_DBUG(0, "[END]dmfe_packet_receive()", 0);
    
}

/*
  Read a word data from SROM
*/
static u16 read_srom_word(board_info_t *db, int offset)
{
    iow(db, DM9KS_EPAR, offset);
    iow(db, DM9KS_EPCR, 0x4);
    while(ior(db, DM9KS_EPCR)&0x1);    /* Wait read complete */
    iow(db, DM9KS_EPCR, 0x0);
    return (ior(db, DM9KS_EPDRL) + (ior(db, DM9KS_EPDRH) << 8) );
}

#if 0
/*
  Set DM9000/DM9010 multicast address
*/
static void dm9000_hash_table(struct net_device *dev)
{
    board_info_t *db = netdev_priv(dev);
    struct dev_mc_list *mcptr = dev->mc_list;
    int mc_cnt = dev->mc_count;
    u32 hash_val;
    u16 i, oft, hash_table[4];

    DMFE_DBUG(0, "dm9000_hash_table()", 0);

    /* enable promiscuous mode */
    if (dev->flags & IFF_PROMISC){
        //printk(KERN_INFO "DM9KS:enable promiscuous mode\n");
        iow(db, DM9KS_RXCR, ior(db,DM9KS_RXCR)|(1<<1));
        return;
    }else{
        //printk(KERN_INFO "DM9KS:disable promiscuous mode\n");
        iow(db, DM9KS_RXCR, ior(db,DM9KS_RXCR)&(~(1<<1)));
    }
        
    /* Receive all multicast packets */
    if (dev->flags & IFF_ALLMULTI){
        //printk(KERN_INFO "DM9KS:Pass all multicast\n");
        iow(db, DM9KS_RXCR, ior(db,DM9KS_RXCR)|(1<<3));
    }else{
        //printk(KERN_INFO "DM9KS:Disable pass all multicast\n");
        iow(db, DM9KS_RXCR, ior(db,DM9KS_RXCR)&(~(1<<3)));
    }
    
    /* Set Node address */
    for (i = 0, oft = 0x10; i < 6; i++, oft++)
        iow(db, oft, dev->dev_addr[i]);

    /* Clear Hash Table */
    for (i = 0; i < 4; i++)
        hash_table[i] = 0x0;

    /* broadcast address */
    hash_table[3] = 0x8000;

    /* the multicast address in Hash Table : 64 bits */
    for (i = 0; i < mc_cnt; i++, mcptr = mcptr->next) {
        hash_val = cal_CRC((char *)mcptr->dmi_addr, 6, 0) & 0x3f; 
        hash_table[hash_val / 16] |= (u16) 1 << (hash_val % 16);
    }

    /* Write the hash table to MAC MD table */
    for (i = 0, oft = 0x16; i < 4; i++) {
        iow(db, oft++, hash_table[i] & 0xff);
        iow(db, oft++, (hash_table[i] >> 8) & 0xff);
    }
}
#else
    
/*
 *  Set DM9000 multicast address
 */
static void
dm9000_hash_table_unlocked(struct net_device *dev)
{
    board_info_t *db = netdev_priv(dev);
    struct netdev_hw_addr *ha;
    int i, oft;
    u32 hash_val;
    u16 hash_table[4];
    u8 rcr = RCR_DIS_LONG | RCR_DIS_CRC | RCR_RXEN;

    //dm9000_dbg(db, 1, "entering %s\n", __func__);

    for (i = 0, oft = DM9000_PAR; i < 6; i++, oft++)
        iow(db, oft, dev->dev_addr[i]);

    /* Clear Hash Table */
    for (i = 0; i < 4; i++)
        hash_table[i] = 0x0;

    /* broadcast address */
    hash_table[3] = 0x8000;

    if (dev->flags & IFF_PROMISC)
        rcr |= RCR_PRMSC;

    if (dev->flags & IFF_ALLMULTI)
        rcr |= RCR_ALL;

    /* the multicast address in Hash Table : 64 bits */
    netdev_for_each_mc_addr(ha, dev) {
        hash_val = ether_crc_le(6, ha->addr) & 0x3f;
        hash_table[hash_val / 16] |= (u16) 1 << (hash_val % 16);
    }

    /* Write the hash table to MAC MD table */
    for (i = 0, oft = DM9000_MAR; i < 4; i++) {
        iow(db, oft++, hash_table[i]);
        iow(db, oft++, hash_table[i] >> 8);
    }

    iow(db, DM9000_RCR, rcr);
}

static void
dm9000_hash_table(struct net_device *dev)
{
    board_info_t *db = netdev_priv(dev);
    unsigned long flags;

    spin_lock_irqsave(&db->lock, flags);
    dm9000_hash_table_unlocked(dev);
    spin_unlock_irqrestore(&db->lock, flags);
}

#endif

/*
  Calculate the CRC valude of the Rx packet
  flag = 1 : return the reverse CRC (for the received packet CRC)
         0 : return the normal CRC (for Hash Table index)
*/
static unsigned long cal_CRC(unsigned char * Data, unsigned int Len, u8 flag)
{    
    u32 crc = ether_crc_le(Len, Data);

    if (flag) 
        return ~crc;
        
    return crc;     
}

static int mdio_read(struct net_device *dev, int phy_id, int location)
{
    board_info_t *db = netdev_priv(dev);
    return phy_read(db, location);
}

static void mdio_write(struct net_device *dev, int phy_id, int location, int val)
{
    board_info_t *db = netdev_priv(dev);
    phy_write(db, location, val);
}

/*
   Read a byte from I/O port
*/
u8 ior(board_info_t *db, int reg)
{
    outb(reg, db->io_addr);
    return inb(db->io_data);
}

/*
   Write a byte to I/O port
*/
void iow(board_info_t *db, int reg, u8 value)
{
    outb(reg, db->io_addr);
    outb(value, db->io_data);
}

/*
   Read a word from phyxcer
*/
static u16 phy_read(board_info_t *db, int reg)
{
    /* Fill the phyxcer register into REG_0C */
    iow(db, DM9KS_EPAR, DM9KS_PHY | reg);

    iow(db, DM9KS_EPCR, 0xc);     /* Issue phyxcer read command */
    while(ior(db, DM9KS_EPCR)&0x1);    /* Wait read complete */
    iow(db, DM9KS_EPCR, 0x0);     /* Clear phyxcer read command */

    /* The read data keeps on REG_0D & REG_0E */
    return ( ior(db, DM9KS_EPDRH) << 8 ) | ior(db, DM9KS_EPDRL);
    
}

/*
   Write a word to phyxcer
*/
static void phy_write(board_info_t *db, int reg, u16 value)
{
    /* Fill the phyxcer register into REG_0C */
    iow(db, DM9KS_EPAR, DM9KS_PHY | reg);

    /* Fill the written data into REG_0D & REG_0E */
    iow(db, DM9KS_EPDRL, (value & 0xff));
    iow(db, DM9KS_EPDRH, ( (value >> 8) & 0xff));

    iow(db, DM9KS_EPCR, 0xa);    /* Issue phyxcer write command */
    while(ior(db, DM9KS_EPCR)&0x1);    /* Wait read complete */
    iow(db, DM9KS_EPCR, 0x0);    /* Clear phyxcer write command */
}
//====dmfe_ethtool_ops member functions====
static void dmfe_get_drvinfo(struct net_device *dev,
                   struct ethtool_drvinfo *info)
{
    //board_info_t *db = netdev_priv(dev);
    strcpy(info->driver, DRV_NAME);
    strcpy(info->version, DRV_VERSION);
    sprintf(info->bus_info, "ISA 0x%lx irq=%d",dev->base_addr, dev->irq);
}
static int dmfe_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
    board_info_t *db = netdev_priv(dev);
    spin_lock_irq(&db->lock);
    mii_ethtool_gset(&db->mii, cmd);
    spin_unlock_irq(&db->lock);
    return 0;
}
static int dmfe_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
    board_info_t *db = netdev_priv(dev);
    int rc;

    spin_lock_irq(&db->lock);
    rc = mii_ethtool_sset(&db->mii, cmd);
    spin_unlock_irq(&db->lock);
    return rc;
}
/*
* Check the link state
*/
static u32 dmfe_get_link(struct net_device *dev)
{
    board_info_t *db = netdev_priv(dev);
    return mii_link_ok(&db->mii);
}

/*
* Reset Auto-negitiation
*/
static int dmfe_nway_reset(struct net_device *dev)
{
    board_info_t *db = netdev_priv(dev);
    return mii_nway_restart(&db->mii);
}
/*
* Get RX checksum offload state
*/
static uint32_t dmfe_get_rx_csum(struct net_device *dev)
{
    board_info_t *db = netdev_priv(dev);
    return db->rx_csum;
}
/*
* Get TX checksum offload state
*/
static uint32_t dmfe_get_tx_csum(struct net_device *dev)
{
    return (dev->features & NETIF_F_HW_CSUM) != 0;
}
/* 
* Enable/Disable RX checksum offload
*/
static int dmfe_set_rx_csum(struct net_device *dev, uint32_t data)
{
#ifdef CHECKSUM
    board_info_t *db = netdev_priv(dev);
    db->rx_csum = data;

    if(netif_running(dev)) {
        dmfe_stop(dev);
        dmfe_open(dev);
    } else
        dmfe_init_dm9000(dev);
#else
    printk(KERN_ERR "DM9:Don't support checksum\n");
#endif
    return 0;
}
/* 
* Enable/Disable TX checksum offload
*/
static int dmfe_set_tx_csum(struct net_device *dev, uint32_t data)
{
#ifdef CHECKSUM
    if (data)
        dev->features |= NETIF_F_HW_CSUM;
    else
        dev->features &= ~NETIF_F_HW_CSUM;
#else
    printk(KERN_ERR "DM9:Don't support checksum\n");
#endif

    return 0;
}
//=========================================
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,4,28)  /* for kernel 2.4.28 */
static struct ethtool_ops dmfe_ethtool_ops = {
    .get_drvinfo        = dmfe_get_drvinfo,
    .get_settings        = dmfe_get_settings,
    .set_settings        = dmfe_set_settings,
    .get_link            = dmfe_get_link,
    .nway_reset        = dmfe_nway_reset,
    //.get_rx_csum        = dmfe_get_rx_csum,
    //.set_rx_csum        = dmfe_set_rx_csum,
    //.get_tx_csum        = dmfe_get_tx_csum,
    //.set_tx_csum        = dmfe_set_tx_csum,
};
#endif


MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Davicom DM9000/DM9010 ISA/uP Fast Ethernet Driver");
#if LINUX_VERSION_CODE < KERNEL_VERSION(2,5,0) 
MODULE_PARM(mode, "i");
MODULE_PARM(irq, "i");
MODULE_PARM(iobase, "i");
#else
module_param(mode, int, 0);
module_param(irq, int, 0);
module_param(iobase, int, 0);
#endif           
MODULE_PARM_DESC(mode,"Media Speed, 0:10MHD, 1:10MFD, 4:100MHD, 5:100MFD");
MODULE_PARM_DESC(irq,"EtherLink IRQ number");
MODULE_PARM_DESC(iobase, "EtherLink I/O base address");

/* Description: 
   when user used insmod to add module, system invoked init_module()
   to initilize and register.
*/
int __init dm9000c_init(void)
{
    volatile unsigned long *BWSCON;
    volatile unsigned long *BANKCON4;
    
    iobase = (int)ioremap(0x20000000, 4096);
    irq    = IRQ_EINT7;

    /* 设置硬件相关 */
    BWSCON   = ioremap(0x48000000, 4);
    BANKCON4 = ioremap(0x48000014, 4);

    /* ST4[19]    :0   = 未使用UB/LB
     * WS4[18]    : 0  = WAIT禁止
     * DW4[17:16] : 01 = 16位
     */
    *BWSCON &= ~(0xf<<16);
    *BWSCON |=  (1<<16);

    /*
     * Tacs[14:13]: 发出片选信号之前,多长时间内要先发出地址信号
     *              DM9000C的片选信号和CMD信号可以同时发出,
     *              所以它设为0
     * Tcos[12:11]: 发出片选信号之后,多长时间才能发出读信号nOE
     *              DM9000C的T1>=0ns, 
     *              所以它设为0
     * Tacc[10:8] : 读写信号的脉冲长度, 
     *              DM9000C的T2>=10ns, 
     *              所以它设为1, 表示2个hclk周期,hclk=100MHz,就是20ns
     * Tcoh[7:6]  : 当读信号nOE变为高电平后,片选信号还要维持多长时间
     *              DM9000C进行写操作时, nWE变为高电平之后, 数据线上的数据还要维持最少3ns
     *              DM9000C进行读操作时, nOE变为高电平之后, 数据线上的数据在6ns之内会消失
     *              我们取一个宽松值: 让片选信号在nOE放为高电平后,再维持10ns, 
     *              所以设为01
     * Tcah[5:4]  : 当片选信号变为高电平后, 地址信号还要维持多长时间
     *              DM9000C的片选信号和CMD信号可以同时出现,同时消失
     *              所以设为0
     * PMC[1:0]   : 00-正常模式
     *
     */
    *BANKCON4 = (7<<8)|(1<<6);

    iounmap(BWSCON);
    iounmap(BANKCON4);
    
    switch(mode) {
        case DM9KS_10MHD:
        case DM9KS_100MHD:
        case DM9KS_10MFD:
        case DM9KS_100MFD:
            media_mode = mode;
            break;
        default:
            media_mode = DM9KS_AUTO;
    }
    dmfe_dev = dmfe_probe();
    if(IS_ERR(dmfe_dev))
        return PTR_ERR(dmfe_dev);
    return 0;
}
/* Description: 
   when user used rmmod to delete module, system invoked clean_module()
   to  un-register DEVICE.
*/
void __exit dm9000c_exit(void)
{
    struct net_device *dev = dmfe_dev;
    DMFE_DBUG(0, "clean_module()", 0);

    unregister_netdev(dmfe_dev);
    release_region(dev->base_addr, 2);
#if LINUX_VERSION_CODE < KERNEL_VERSION(2,5,0)
    kfree(dev);
#else
    free_netdev(dev);
    iounmap((void *)iobase);
#endif
    
    DMFE_DBUG(0, "clean_module() exit", 0);
}

module_init(dm9000c_init);
module_exit(dm9000c_exit);
dm9000c_drv.c
posted on 2020-11-29 19:16  quinoa  阅读(461)  评论(0编辑  收藏  举报