OLAP之Druid之查询

数据查询

Druid的聚合查询主要有三种形式:

  • Timeseries
  • TopN
  • GroupBy

一般而言,OLAP系统最核心的能力是GroupBy查询,Druid也不例外。 但是GroupBy查询资源消耗较多,TopNTimeseries作为GroupBy的有益补充,能够改善查询的性能。我们建议:如果TopNTimeseries能够满足业务的应用场景,那么尽量采用这两种查询,而非GroupBy

Druid提供RESTful的查询接口,用户使用JSON表达查询意图。

查询命令:

curl -X POST 'broker:<port>/druid/v2/?pretty' -H 'Content-Type:application/json' -d @<query_json_file>

注意点

在Druid查询中,过滤条件是所有查询都可能涉及的部分,并且有一些使用技巧,需要特别注意。请参考Filters

指标聚合这部分也是非常重要的,Aggregations也提供了系统的介绍,此处就不再赘述了。我们需要指出的是,这一页文档中Filtered Aggregator能够提供非常强大的查询功能,比如在查询过程中根据维度取值定制指标。

GroupBy

示例

{
  "queryType": "groupBy",
  "dataSource": "sample_datasource",
  "granularity": "day",
  "dimensions": ["country", "device"], #需要聚合的维度列
  "limitSpec": { "type": "default", "limit": 5000, "columns": ["country", "data_transfer"] }, #limit语句
  "filter": { #过滤条件
    "type": "and",
    "fields": [
      { "type": "selector", "dimension": "carrier", "value": "AT&T" },
      { "type": "or", 
        "fields": [
          { "type": "selector", "dimension": "make", "value": "Apple" },
          { "type": "selector", "dimension": "make", "value": "Samsung" }
        ]
      }
    ]
  },
  "aggregations": [ #返回的指标列
    { "type": "longSum", "name": "total_usage", "fieldName": "user_count" },
    { "type": "doubleSum", "name": "data_transfer", "fieldName": "data_transfer" }
  ],
  "postAggregations": [ #这部分是可选的
    { "type": "arithmetic",
      "name": "avg_usage",
      "fn": "/",
      "fields": [
        { "type": "fieldAccess", "fieldName": "data_transfer" },
        { "type": "fieldAccess", "fieldName": "total_usage" }
      ]
    }
  ],
  "intervals": [ "2012-01-01T00:00:00.000/2012-01-03T00:00:00.000" ], #本次查询需要覆盖的时间范围
  "having": { #having语句,这部分是可选的
    "type": "greaterThan",
    "aggregation": "total_usage",
    "value": 100
  }
}

Timeseries

示例

{
  "queryType": "timeseries",
  "dataSource": "sample_datasource",
  "granularity": "day",
  "descending": "true", #是否排序
  "filter": { #过滤条件
    "type": "and",
    "fields": [
      { "type": "selector", "dimension": "sample_dimension1", "value": "sample_value1" },
      { "type": "or",
        "fields": [
          { "type": "selector", "dimension": "sample_dimension2", "value": "sample_value2" },
          { "type": "selector", "dimension": "sample_dimension3", "value": "sample_value3" }
        ]
      }
    ]
  },
  "aggregations": [ #返回的指标列
    { "type": "longSum", "name": "sample_name1", "fieldName": "sample_fieldName1" },
    { "type": "doubleSum", "name": "sample_name2", "fieldName": "sample_fieldName2" }
  ],
  "postAggregations": [ #这部分是可选的
    { "type": "arithmetic",
      "name": "sample_divide",
      "fn": "/",
      "fields": [
        { "type": "fieldAccess", "name": "postAgg__sample_name1", "fieldName": "sample_name1" },
        { "type": "fieldAccess", "name": "postAgg__sample_name2", "fieldName": "sample_name2" }
      ]
    }
  ],
  "intervals": [ "2012-01-01T00:00:00.000/2012-01-04T00:00:00.000" ] #本次查询覆盖的时间范围
}

Timeseries query通常对空的查询时间段返回0作为查询结果

TopN

  • TopN查询返回的是根据某一维度进行group by后再排序,返回结果集
  • 为了提高执行效率,TopN的查询是近似查询(从我们使用经验来看,返回结果基本是比较准确的)

示例

{
  "queryType": "topN",
  "dataSource": "sample_data",
  "dimension": "sample_dim", #需要聚合的维度列
  "threshold": 5,
  "metric": "count", #作为排序依据的指标列
  "granularity": "all",
  "filter": { #过滤条件
    "type": "and",
    "fields": [
      {
        "type": "selector",
        "dimension": "dim1",
        "value": "some_value"
      },
      {
        "type": "selector",
        "dimension": "dim2",
        "value": "some_other_val"
      }
    ]
  },
  "aggregations": [ #返回的指标列
    {
      "type": "longSum",
      "name": "count",
      "fieldName": "count"
    },
    {
      "type": "doubleSum",
      "name": "some_metric",
      "fieldName": "some_metric"
    }
  ],
  "postAggregations": [ #后处理逻辑,这部分是可选的
    {
      "type": "arithmetic",
      "name": "sample_divide",
      "fn": "/",
      "fields": [
        {
          "type": "fieldAccess",
          "name": "some_metric",
          "fieldName": "some_metric"
        },
        {
          "type": "fieldAccess",
          "name": "count",
          "fieldName": "count"
        }
      ]
    }
  ],
  "intervals": [
    "2013-08-31T00:00:00.000/2013-09-03T00:00:00.000" #查询覆盖的时间范围
  ]
}

 

posted @ 2020-04-08 22:37  boiledwater  阅读(906)  评论(0编辑  收藏  举报