Java Map
Map无论在Java编程或者面试中,都占用很重要的地位,这里试图聊聊相关的概念,看看是否能够理清楚相关的思路。
HashMap
HashMap
是我们经常会用到的集合类,JDK 1.7 之前底层使用了数组加链表的组合结构,如下图所示:
新添加的元素通过取模的方式,定位 Table
数组位置,然后将元素加入链表头部,这样下次提取时就可以快速被访问到。
访问数据时,也是通过取模的方式,定位数组中的位置,然后再遍历链表,依次比较,获取相应的元素。
如果 HasMap
中元素过多时,可能导致某个位置上链表很长。原本 O(1) 查找性能,可能就退化成 O(N),严重降低查找效率。
为了避免这种情况,当 HasMap
元素数量满足以下条件时,将会自动扩容,重新分配元素。
1// size:HashMap 中实际元素数量 2//capacity:HashMap 容量,即 Table 数组长度,默认为:16 3//loadFactor:负载因子,默认为:0.75 4 size>=capacity*loadFactor
HasMap
将会把容量扩充为原来的两倍,然后将原数组元素迁移至新数组。
1void transfer(Entry[] newTable, boolean rehash) { 2 int newCapacity = newTable.length; 3 for (Entry<K,V> e : table) { 4 while(null != e) { 5 Entry<K,V> next = e.next; 6 if (rehash) { 7 e.hash = null == e.key ? 0 : hash(e.key); 8 } 9 int i = indexFor(e.hash, newCapacity); 10 // 以下代码导致死链的产生 11 e.next = newTable[i]; 12 // 插入到链表头结点, 13 newTable[i] = e; 14 e = next; 15 } 16 } 17}
旧数组元素迁移到新数组时,依旧采用『头插入法』,这样将会导致新链表元素的逆序排序。
多线程并发扩容的情况下,链表可能形成死链(环形链表)。一旦有任何查找元素的动作,线程将会陷入死循环,从而引发 CPU 使用率飙升。
死链形成过程可参见:https://coolshell.cn/articles/9606.html
JDK1.8 改进方案
JDK1.8 HashMap
底层结构进行彻底重构,使用数组加链表/红黑树方式这种组合结构。
新元素依旧通过取模方式获取 Table
数组位置,然后再将元素加入链表尾部。一旦链表元素数量超过 8 之后,自动转为红黑树,进一步提高了查找效率。
由于 JDK1.8 链表采用『尾插入』法,从而避免并发扩容情况下链表形成死链的可能。
那么 HashMap
在 JDK1.8 版本就是并发安全的吗?
其实并没有,多线程并发的情况,HashMap
可能导致丢失数据。
下面是一段 JDK1.8 测试代码:
输出如下,数据发生了丢失:
从源码出发,并发过程数据丢失的原因有以下几点:
并发赋值时被覆盖
并发的情况下,一个线程的赋值可能被另一个线程覆盖,这就导致对象的丢失。
size 计算问题
每次元素增加完成之后,size
将会加 1。这里采用 ++i
方法,天然的并发不安全。
一旦发生死链的问题,机器 CPU 飙升,通过系统监控,我们可以很容易发现。
但是数据丢失的问题就不容易被发现。因为数据丢失环节往往非常长,往往需要系统运行一段时间才可能出现,而且这种情况下又不会形成脏数据。只有出现一些诡异的情况,我们才可能去排查,而且这种问题排查起来也比较困难。
SynchronizedMap
对于并发的情况,我们可以使用 JDK 提供 SynchronizedMap
保证安全。
SynchronizedMap
是一个内部类,只能通过以下方式创建实例。
1 Map m = Collections.synchronizedMap(new HashMap(...));
SynchronizedMap
源码如下:
每个方法内将会使用 synchronized
关键字加锁,从而保证并发安全。
由于多线程共享同一把锁,导致同一时间只允许一个线程读写操作,其他线程必须等待,极大降低的性能。
并且大多数业务场景都是读多写少,多线程读操作本身并不冲突,SynchronizedMap
极大的限制读的性能。
所以多线程并发场景我们很少使用 SynchronizedMap
。
ConcurrentHashMap
既然多线程共享一把锁,导致性能下降。那么设想一下我们是不是多搞几把锁,分流线程,减少锁冲突,提高并发度。
ConcurrentHashMap
正是使用这种方法,不但保证并发过程数据安全,又保证一定的效率。
JDK1.7
JDK1.7 ConcurrentHashMap
数据结构如下所示:
Segament
是一个ConcurrentHashMap
内部类,底层结构与 HashMap
一致。另外Segament
继承自 ReentrantLock
,类图如下:
当新元素加入 ConcurrentHashMap
时,首先根据 key hash 值找到相应的 Segament
。接着直接对 Segament
上锁,若获取成功,后续操作步骤如同 HashMap
。
由于锁的存在,Segament
内部操作都是并发安全,同时由于其他 Segament
未被占用,因此可以支持 concurrencyLevel 个线程安全的并发读写。
size 统计问题
虽然 ConcurrentHashMap
引入分段锁解决多线程并发的问题,但是同时引入新的复杂度,导致计算 ConcurrentHashMap
元素数量将会变得复杂。
由于 ConcurrentHashMap
元素实际分布在 Segament
中,为了统计实际数量,只能遍历 Segament
数组求和。
为了数据的准确性,这个过程过我们需要锁住所有的 Segament
,计算结束之后,再依次解锁。不过这样做,将会导致写操作被阻塞,一定程度降低 ConcurrentHashMap
性能。
所以这里对 ConcurrentHashMap#size
统计方法进行一定的优化。
Segment
每次被修改(写入,删除),都会对 modCount
(更新次数)加 1。只要相邻两次计算获取所有的 Segment
modCount
总和一致,则代表两次计算过程并无写入或删除,可以直接返回统计数量。
如果三次计算结果都不一致,那没办法只能对所有 Segment
加锁,重新计算结果。
这里需要注意的是,这里求得 size 数量不能做到 100% 准确。这是因为最后依次对 Segment
解锁后,可能会有其他线程进入写入操作。这样就导致返回时的数量与实际数不一致。
不过这也能被接受,总不能因为为了统计元素停止所有元素的写入操作。
性能问题
想象一种极端情况的,所有写入都落在同一个 Segment
中,这就导致ConcurrentHashMap
退化成 SynchronizedMap
,共同抢一把锁。
JDK1.8 改进方案
JDK1.8 之后,ConcurrentHashMap
取消了分段锁的设计,进一步减少锁冲突的发生。另外也引入红黑树的结构,进一步提高查找效率。
数据结构如下所示:
Table
数组的中每一个 Node
我们都可以看做一把锁,这就避免了 Segament
退化问题。
另外一旦 ConcurrentHashMap
扩容, Table
数组元素变多,锁的数量也会变多,并发度也会提高。
写入元素源码比较复杂,这里可以参考下面流程图。
总的来说,JDK1.8 使用 CAS 方法加 synchronized
方式,保证并发安全。
size 方法优化
JDK1.8 ConcurrentHashMap#size
统计方法还是比较简单的:
这个方法我们需要知道两个重要变量:
-
baseCount
-
CounterCell[] counterCells
baseCount
记录元素数量的,每次元素元素变更之后,将会使用 CAS
方式更新该值。
如果多个线程并发增加新元素,baseCount
更新冲突,将会启用 CounterCell
,通过使用 CAS
方式将总数更新到 counterCells
数组对应的位置,减少竞争。
如果 CAS
更新 counterCells
数组某个位置出现多次失败,这表明多个线程在使用这个位置。此时将会通过扩容 counterCells
方式,再次减少冲突。
通过上面的努力,统计元素总数就变得非常简单,只要计算 baseCount
与 counterCells
总和,整个过程都不需要加锁。
仔细回味一下,counterCells
也是通过类似分段锁思想,减少多线程竞争。
总结
HashMap
在多线程并发的过程中存在死链与丢失数据的可能,不适合用于多线程并发使用的场景的,我们可以在方法的局部变量中使用。
SynchronizedMap
虽然线程安全,但是由于锁粒度太大,导致性能太低,所以也不太适合在多线程使用。
ConcurrentHashMap
由于使用多把锁,充分降低多线程并发竞争的概率,提高了并发度,非常适合在多线程中使用。
不要一提到多线程环境,就直接使用 ConcurrentHashMap
。如果仅仅使用 Map
当做全局变量,而这个变量初始加载之后,从此数据不再变动的场景下。建议使用不变集合类 Collections#unmodifiableMap
,或者使用 Guava 的 ImmutableMap
。不可变集合的好处在于,可以有效防止其他线程偷偷修改,从而引发一些业务问题。