关联分析--FP-growth算法
关联分析
概述:一种在大规模数据集中寻找有趣关系的任务。
这种关系形式:频繁项集或者关联规则。
频繁项集:经常出现在一块的物品集合。
关联规则:暗示物品之间可能存在很强的关系。
对频繁的度量: 支持度和可信度
支持度:数据集中包含该项集的记录所占的比例
可信度或者置信度: 针对诸如:{尿布}->{葡萄酒}的关联规则来定义,这条规则的可信度被定义为:
“支持度({尿布, 葡萄酒})/支持度({尿布})”
支持度和可信度是用来量化关联分析是否成功的方法
经典发现频繁项集算法:Apriori、FP-growth算法
FP-growth算法(Frequent Pattern growth)
优点: 一般快于Apriori
缺点: 实现比较困难,在某些数据集上性能会下降
适用数据类型:标称型数据
FP-growth算法工作流程:
首先构建FP树,利用它来挖掘频繁项集。构建FP树需要对原始树扫描两遍,第一遍对所有元素项出现
次数进行统计,如果某个元素不是频繁的,那么包含该元素的超集也不是频繁的,第二遍扫描只需考虑
频繁元素。
构建FP树
代码实践:
#!/usr/bin/env python3
# -*- coding:utf-8 -*-
"""
FP-growth算法
"""
class treeNode:
"""
FP树节点
"""
def __init__(self, nameValue, numOccur, parentNode):
self.name = nameValue
self.count = numOccur
self.nodeLink = None # 链接相似元素项
self.parent = parentNode
self.children = {}
def inc(self, numOccur):
self.count += numOccur
def disp(self, ind=1):
print(f'{" " * ind}{self.name}\t{self.count}')
for child in self.children.values():
child.disp(ind+1)
def createTree(dataSet, minSup=1):
"""
创建FP树
:param dataSet:
:param minSup:
:return:
"""
headerTable = {}
# 遍历数据集,并统计每个元素项出现频度
for trans in dataSet:
for item in trans:
headerTable[item] = headerTable.get(item, 0) + dataSet[trans]
# 移除不满足最小支持度的元素项
headerTableTemp = headerTable.copy()
for k in headerTableTemp.keys():
if headerTableTemp[k] < minSup:
headerTable.__delitem__(k)
freqItemSet = set(headerTable.keys())
# 如果没有满足要求元素项,则退出
if len(freqItemSet) == 0:
return None, None
for k in headerTable:
headerTable[k] = [headerTable[k], None]
# 创建包含空集合的根节点
retTree = treeNode('Null Set', 1, None)
for tranSet, count in dataSet.items():
# 根据全局频率对每个事物中的元素进行排序
localD = {}
for item in tranSet:
if item in freqItemSet:
localD[item] = headerTable[item][0]
if len(localD) > 0:
orderedItems = [v[0] for v in sorted(localD.items(), key=lambda p: p[1], reverse=True)]
# 使用排序后的频率项集对树进行填充
updateTree(orderedItems, retTree, headerTable, count)
return retTree, headerTable # return tree and header table
def updateTree(items, inTree, headerTable, count):
"""
更新FP树
:param items:
:param inTree:
:param headerTable:
:param count:
:return:
"""
if items[0] in inTree.children:
inTree.children[items[0]].inc(count)
else:
inTree.children[items[0]] = treeNode(items[0], count, inTree)
if headerTable[items[0]][1] == None:
headerTable[items[0]][1] = inTree.children[items[0]]
else:
updateHeader(headerTable[items[0]][1], inTree.children[items[0]])
if len(items) > 1:
# 对剩下元素项迭代,调用updateTree
updateTree(items[1::], inTree.children[items[0]], headerTable, count)
def updateHeader(nodeToTest, targetNode):
"""
更新表头
:param nodeToTest:
:param targetNode:
:return:
"""
while nodeToTest.nodeLink != None:
nodeToTest = nodeToTest.nodeLink
nodeToTest.nodeLink = targetNode
def loadSimpDat():
simpDat = [
['r', 'z', 'h', 'j', 'p'],
['z', 'y', 'x', 'w', 'v', 'u', 't', 's'],
['z'],
['r', 'x', 'n', 'o', 's'],
['y', 'r', 'x', 'z', 'q', 't', 'p'],
['y', 'z', 'x', 'e', 'q', 's', 't', 'm']
]
return simpDat
def createInitSet(dataSet):
retDict = {}
for trans in dataSet:
retDict[frozenset(trans)] = 1
return retDict
def ascendTree(leafNode, prefixPath):
if leafNode.parent != None:
prefixPath.append(leafNode.name)
ascendTree(leafNode.parent, prefixPath)
def findPrefixPath(basePat, treeNode):
"""
查找以某个节点为终点的路径前缀
:param basePat:
:param treeNode:
:return:
"""
condPats = {}
while treeNode != None:
prefixPath = []
ascendTree(treeNode, prefixPath)
if len(prefixPath) > 1:
condPats[frozenset(prefixPath[1:])] = treeNode.count
treeNode = treeNode.nodeLink
return condPats
def mineTree(inTree, headerTable, minSup, preFix, freqItemList):
bigL = [v[0] for v in sorted(headerTable.items(), key=lambda p: p[0])] # (sort header table)
for basePat in bigL:
newFreqSet = preFix.copy()
newFreqSet.add(basePat)
freqItemList.append(newFreqSet)
condPattBases = findPrefixPath(basePat, headerTable[basePat][1])
myCondTree, myHead = createTree(condPattBases, minSup)
if myHead != None:
mineTree(myCondTree, myHead, minSup, newFreqSet, freqItemList)
if __name__ == '__main__':
simpDat = loadSimpDat()
initSet = createInitSet(simpDat)
myFPtree, myHeaderTab = createTree(initSet, 3)
freqItems = []
mineTree(myFPtree, myHeaderTab, 3, set([]), freqItems)
print(freqItems)