范数||x||(norm)笔记
1. 范数的含义和定义
范数是具有“长度”概念的函数。在线性代数、泛函分析及相关领域,是一个函数,它为向量空间内的所有向量赋予非零的正的长度或大小。另一方面,半范数可以为非零的向量赋予零长度。
例如,在二维欧式几何空间\(R^2\)中(简单理解就是二维坐标系)就有欧式范数。在这个向量空间的元素(比如向量\((3,7)\))常常在笛卡尔坐标系统中被画成一个从原点出发的箭头,而这个向量的欧式范数就是箭头的长度。
拥有(定义)范数的向量空间就是赋范向量空间,拥有(定义)办法书的向量空间就是赋半范向量空间
更加规范的定义:
假设V是域F上的向量空间;V的半范数是一个函数:\(p:V\rightarrow R;x\rightarrow p(x)\),满足:
- \(p(v)\ge 0\)(具有半正定性)
- \(p(av)=|a|p(v)\)(具有绝对一次齐次性)
- \(p(u+v)\le p(u)+p(v)\)(满足三角不等式,或者称次可加性)
范数是一个半范数加上额外的性质:
- \(p(v)=0\),当且仅当\(v\)是零向量(正定性)
若拓扑向量空降的拓扑可以被范数导出,这个拓扑向量空间被称为赋范向量空间。
2.例子
- 所有的范数都是半范数
- 平凡半范数,即\(p(x)=0,\forall x \in V\)
- 绝对值是实数集上的一个范数
- 对向量空间上的线性型\(f\)可以定义一个半范数:\(x\rightarrow |f(x)|\)
绝对值范数
绝对值范数为:
是在由实数或虚数构成的一维向量空间中的范数
绝对值范数是曼哈顿范数的特殊形式
\(L_p\)范数
\(L_p\)范数是向量空间中的一组范数。\(L_p\)范数与幂平均有一定的联系,定义如下:
图中的q应为p。这是p取不同值是,在\(R^2\)空间上的\(L_p\)范数等高线的其中一条。该图展示了各\(L_p\)范数的形状。
-
\(p=0 : ||\vec{x}||_0=x_i不等于0的个数\)。注意,这里的\(L_0\)范数并非通常意义上的范数(不满足三角不等式或次可加性)
-
\(p=1 : ||\vec{x}||_1=\sum^{n}_{i=1}|x_i|\),即\(L_1\)范数是向量各分量绝对值之和,又称曼哈顿距离、最小绝对误差等。使用L1范数可以度量两个向量之间的差异,汝绝对误差和(Sum of Absolute Difference)
由于L1范数的天然性质,对L1优化的解是一个稀疏解(查不到准确的定义,不过大概意思就是说这个解向量中很多项都是零),L1范数也就被称作稀疏规则算子
-
\(p=2 : ||\vec{x}||_2=\sqrt{\sum^n_{i=1}|x_i|^2}\),此为欧氏距离
-
\(p=+\infty : ||\vec{x}||_{\infty}=\lim\limits_{p\rightarrow\infty}(\displaystyle\sum_{i=1}^{n}|x_i|^p)^{\frac{1}{p}}=\underset{i}{max}\ |x_i|\)[1],通常表示元素的最大值,即无穷范数或最大范数
欧几里得范数
在n维欧几里得空间\(R^n\)上,向量\(x=(x_1,x_2,x_3,...,x_n)^T\)的最符合直觉的长度由以下公式给出:
根据勾股定理,它给出了从原点到点x之间的(通常意义下)的距离。欧几里得范数是\(R^n\)上最常用的范数,但正如下面所举出的,\(R^n\)上也可以定义其它的范数。然而,以下定义的范数都定义了同一个拓扑结构,因此它们在某种意义上都是等价的。
在一个n维复数空间\(C^n\)中,最常见的范数是:
以上两者又可以以向量与自身的内积的平凡根表示:
其中x是一个列向量\(([x_1,x_2,...,x_n]^T)\),而\(x^*\)表示其共轭转置
以上公式适用于任何内积空间,包括欧式空间和复空间。在欧几里得空间里,内积等价于电机,因此公式可以写为:
特别的,\(R^{n+1}\)中所有的欧几里得范数为同一个给定正实数的向量的集合是一个n维球面。
矩阵范数
矩阵可以看做向量空间上的一次向量的线性变换,矩阵范数就是用来衡量变化幅度大小的
诱导范数
由向量范数的\(L_p\)范数诱导而来:
列和范数
即所有矩阵的列向量绝对值之和的最大值
谱范数
即\(A^TA\)矩阵的最大特征值的开平方
行和范数
即所有矩阵行向量绝对值之和的最大值
非诱导范数
Frobenius范数
即矩阵元素绝对值的平方和再开平方
核范数
指矩阵奇异值的和
参考:
一些更深入的相关知识:
看一个例子\(\underset{x_i}{min}\ \underset{y_i}{max}\ |\varepsilon_i|,\varepsilon_i=x_i-y_i\).这个例子里面 |εi|是考察对象,而 xi 和 yi 是两个变量。xi 可以取很多值, yi也可以取很多值。两个下标的意思是:遍历所有的xi和yi取值。先看里面那一层,即 max|εi|.它的意思是,xi取一个固定的值(比如x1),yi遍历所有取值,使得|εi|最大值,这样就找到了(x1, ym1, |εi|1) 这样一个样本。然后,改变xi的值(比如x2),再遍历yi取值,又可以找到|εi|最大值,即 (x2, ym2, |εi|2)的情况。……以此类推,可以理解 min{ },就是在 xi 取所有情况时,从找到的 |εi|1, |εi|2 .... 中找最小值。 ↩︎