java-spring基于redis单机版(redisTemplate)实现的分布式锁+redis消息队列,可用于秒杀,定时器,高并发,抢购
此教程不涉及整合spring整合redis,可另行查阅资料教程。
代码:
RedisLock
package com.cashloan.analytics.utils; import org.slf4j.Logger; import org.slf4j.LoggerFactory; import org.springframework.beans.factory.annotation.Autowired; import org.springframework.data.redis.core.RedisCallback; import org.springframework.data.redis.core.RedisTemplate; import org.springframework.data.redis.serializer.StringRedisSerializer; import org.springframework.stereotype.Component; @Component public class RedisLock { private static Logger logger = LoggerFactory.getLogger(RedisLock.class); private static final int DEFAULT_ACQUIRY_RESOLUTION_MILLIS = 100; public static final String LOCK_PREFIX = "redis_lock_"; @Autowired private RedisTemplate<String, Object> redisTemplate; /** * 锁超时时间,防止线程在入锁以后,无限的执行等待 */ private int expireMsecs = 60 * 1000; /** * 锁等待时间,防止线程饥饿 */ private int timeoutMsecs = 10 * 1000; public String get(final String key) { Object obj = null; try { obj = redisTemplate.execute((RedisCallback<Object>) connection -> { StringRedisSerializer serializer = new StringRedisSerializer(); byte[] data = connection.get(serializer.serialize(key)); connection.close(); if (data == null) { return null; } return serializer.deserialize(data); }); } catch (Exception e) { logger.error("get redis error, key : {}", key); } return obj != null ? obj.toString() : null; } public boolean setNX(final String key, final String value) { Object obj = null; try { obj = redisTemplate.execute((RedisCallback<Object>) connection -> { StringRedisSerializer serializer = new StringRedisSerializer(); Boolean success = connection.setNX(serializer.serialize(key), serializer.serialize(value)); connection.close(); return success; }); } catch (Exception e) { logger.error("setNX redis error, key : {}", key); } return obj != null ? (Boolean) obj : false; } private String getSet(final String key, final String value) { Object obj = null; try { obj = redisTemplate.execute((RedisCallback<Object>) connection -> { StringRedisSerializer serializer = new StringRedisSerializer(); byte[] ret = connection.getSet(serializer.serialize(key), serializer.serialize(value)); connection.close(); return serializer.deserialize(ret); }); } catch (Exception e) { logger.error("setNX redis error, key : {}", key); } return obj != null ? (String) obj : null; } /** * 获得 lock. 实现思路: 主要是使用了redis 的setnx命令,缓存了锁. reids缓存的key是锁的key,所有的共享, * value是锁的到期时间(注意:这里把过期时间放在value了,没有时间上设置其超时时间) 执行过程: * 1.通过setnx尝试设置某个key的值,成功(当前没有这个锁)则返回,成功获得锁 * 2.锁已经存在则获取锁的到期时间,和当前时间比较,超时的话,则设置新的值 * * @return true if lock is acquired, false acquire timeouted * @throws InterruptedException * in case of thread interruption */ public boolean lock(String lockKey) throws InterruptedException { lockKey = LOCK_PREFIX + lockKey; int timeout = timeoutMsecs; while (timeout >= 0) { long expires = System.currentTimeMillis() + expireMsecs + 1; String expiresStr = String.valueOf(expires); // 锁到期时间 if (this.setNX(lockKey, expiresStr)) { return true; } String currentValueStr = this.get(lockKey); // redis里的时间 if (currentValueStr != null && Long.parseLong(currentValueStr) < System.currentTimeMillis()) { // 判断是否为空,不为空的情况下,如果被其他线程设置了值,则第二个条件判断是过不去的 // lock is expired String oldValueStr = this.getSet(lockKey, expiresStr); // 获取上一个锁到期时间,并设置现在的锁到期时间, // 只有一个线程才能获取上一个线上的设置时间,因为jedis.getSet是同步的 if (oldValueStr != null && oldValueStr.equals(currentValueStr)) { // 防止误删(覆盖,因为key是相同的)了他人的锁——这里达不到效果,这里值会被覆盖,但是因为什么相差了很少的时间,所以可以接受 // [分布式的情况下]:如过这个时候,多个线程恰好都到了这里,但是只有一个线程的设置值和当前值相同,他才有权利获取锁 return true; } } timeout -= DEFAULT_ACQUIRY_RESOLUTION_MILLIS; /* * 延迟100 毫秒, 这里使用随机时间可能会好一点,可以防止饥饿进程的出现,即,当同时到达多个进程, * 只会有一个进程获得锁,其他的都用同样的频率进行尝试,后面有来了一些进行,也以同样的频率申请锁,这将可能导致前面来的锁得不到满足. * 使用随机的等待时间可以一定程度上保证公平性 */ Thread.sleep(DEFAULT_ACQUIRY_RESOLUTION_MILLIS); } return false; } /** * Acqurired lock release. */ public void unlock(String lockKey) { lockKey = LOCK_PREFIX + lockKey; redisTemplate.delete(lockKey); } }
redis消息队列:RedisQueue
package com.cashloan.analytics.utils; import org.springframework.beans.factory.annotation.Autowired; import org.springframework.data.redis.core.RedisTemplate; import org.springframework.stereotype.Component; import java.util.List; import java.util.concurrent.TimeUnit; /** * redis消息队列 */ @Component public class RedisQueue { @Autowired private RedisTemplate<String, Object> redisTemplate; /** ---------------------------------- redis消息队列 ---------------------------------- */ /** * 存值 * @param key 键 * @param value 值 * @return */ public boolean lpush(String key, Object value) { try { redisTemplate.opsForList().leftPush(key, value); return true; } catch (Exception e) { e.printStackTrace(); return false; } } /** * 取值 - <rpop:非阻塞式> * @param key 键 * @return */ public Object rpop(String key) { try { return redisTemplate.opsForList().rightPop(key); } catch (Exception e) { e.printStackTrace(); return null; } } /** * 取值 - <brpop:阻塞式> - 推荐使用 * @param key 键 * @param timeout 超时时间 * @param timeUnit 给定单元粒度的时间段 * TimeUnit.DAYS //天 * TimeUnit.HOURS //小时 * TimeUnit.MINUTES //分钟 * TimeUnit.SECONDS //秒 * TimeUnit.MILLISECONDS //毫秒 * @return */ public Object brpop(String key, long timeout, TimeUnit timeUnit) { try { return redisTemplate.opsForList().rightPop(key, timeout, timeUnit); } catch (Exception e) { e.printStackTrace(); return null; } } /** * 查看值 * @param key 键 * @param start 开始 * @param end 结束 0 到 -1代表所有值 * @return */ public List<Object> lrange(String key, long start, long end) { try { return redisTemplate.opsForList().range(key, start, end); } catch (Exception e) { e.printStackTrace(); return null; } } }
测试类controller:Test
package com.cashloan.analytics.controller; import com.cashloan.analytics.utils.RedisLock; import com.cashloan.analytics.utils.RedisQueue; import org.springframework.beans.factory.annotation.Autowired; import org.springframework.web.bind.annotation.GetMapping; import org.springframework.web.bind.annotation.RequestMapping; import org.springframework.web.bind.annotation.RestController; import java.util.*; @RestController @RequestMapping("/test") public class Test { private final static String MESSAGE = "testmq"; @Autowired private RedisQueue redisQueue; @Autowired private RedisLock redisLock; @GetMapping("/add") public String add() { String uuid = UUID.randomUUID().toString().replaceAll("-", ""); Map map = new HashMap(); map.put("id", uuid); // 加入redis消息队列 redisQueue.lpush(MESSAGE, map); addBatch(); return "success"; } public void addBatch() { try { if (redisLock.lock(MESSAGE)) { List<Object> lrange = redisQueue.lrange(MESSAGE, 0, -1); int size = lrange.size(); if (size >= 10) { List<Map> maps = new ArrayList<>(); for (int i = 0; i < size; i++) { Object brpop = redisQueue.rpop(MESSAGE); if (brpop != null) { maps.add((Map) brpop); } } // 记录数据 if (!maps.isEmpty()) { for (int i = 0; i < maps.size(); i++) { System.out.println(maps.get(i).get("id")); Thread.sleep(100); } } } } } catch (InterruptedException e) { e.printStackTrace(); } finally { redisLock.unlock(MESSAGE); } } }
另有一份模拟高并发多线程请求的工具(python3):
# -*- coding: utf-8 -*- import requests import threading class postrequests(): def __init__(self): self.url = 'http://localhost:9090/test/add' def post(self): try: r = requests.get(self.url) print(r.text) except Exception as e: print(e) def test(): test = postrequests() return test.post() try: i = 0 # 开启线程数目 tasks_number = 105 print('测试启动') while i < tasks_number: t = threading.Thread(target=test) t.start() i += 1 except Exception as e: print(e)