python学习之路(10)--难点
递归函数
在函数内部,可以调用其他函数。如果一个函数在内部调用自身本身,这个函数就是递归函数。
举个例子,我们来计算阶乘n! = 1 x 2 x 3 x ... x n
,用函数fact(n)
表示,可以看出:
fact(n) = n! = 1 x 2 x 3 x ... x (n-1) x n = (n-1)! x n = fact(n-1) x n
所以,fact(n)
可以表示为n x fact(n-1)
,只有n=1时需要特殊处理。
于是,fact(n)
用递归的方式写出来就是:
def fact(n):
if n==1:
return 1
else:
sum=n*fact(n-1)
return sum
上面就是一个递归函数。可以试试:
>>> fact(5) 120 >>> fact(11) 39916800
如果我们计算fact(5)
,可以根据函数定义看到计算过程如下: 这里有点难理解 可以一步一步的想 一直在循环调用函数
===> fact(5) ===> 5 * fact(4) ===> 5 * (4 * fact(3)) ===> 5 * (4 * (3 * fact(2))) ===> 5 * (4 * (3 * (2 * fact(1)))) ===> 5 * (4 * (3 * (2 * 1))) ===> 5 * (4 * (3 * 2)) ===> 5 * (4 * 6) ===> 5 * 24 ===> 120
递归函数的优点是定义简单,逻辑清晰。理论上,所有的递归函数都可以写成循环的方式,但循环的逻辑不如递归清晰。
使用递归函数需要注意防止栈溢出。在计算机中,函数调用是通过栈(stack)这种数据结构实现的,每当进入一个函数调用,栈就会加一层栈帧,每当函数返回,栈就会减一层栈帧。由于栈的大小不是无限的,所以,递归调用的次数过多,会导致栈溢出。可以试试fact(1000)
:
>>> fact(1000) Traceback (most recent call last): File "<pyshell#6>", line 1, in <module> fact(1000) File "C:/Users/Administrator/Desktop/10.py", line 4, in fact return n*fact(n-1) File "C:/Users/Administrator/Desktop/10.py", line 4, in fact return n*fact(n-1) File "C:/Users/Administrator/Desktop/10.py", line 4, in fact return n*fact(n-1) [Previous line repeated 989 more times] File "C:/Users/Administrator/Desktop/10.py", line 2, in fact if n==1: RecursionError: maximum recursion depth exceeded in comparison
解决递归调用栈溢出的方法是通过尾递归优化,事实上尾递归和循环的效果是一样的,所以,把循环看成是一种特殊的尾递归函数也是可以的。
尾递归是指,在函数返回的时候,调用自身本身,并且,return语句不能包含表达式。这样,编译器或者解释器就可以把尾递归做优化,使递归本身无论调用多少次,都只占用一个栈帧,不会出现栈溢出的情况。
上面的fact(n)
函数由于return n * fact(n - 1)
引入了乘法表达式,所以就不是尾递归了。要改成尾递归方式,需要多一点代码,主要是要把每一步的乘积传入到递归函数中:
def fact(n): return fact_iter(n,1) def fact_iter(num,product): if num==1: return product return fact_iter(num-1,num*product)
可以看到,return fact_iter(num - 1, num * product)
仅返回递归函数本身,num - 1
和num * product
在函数调用前就会被计算,不影响函数调用。
fact(5)
对应的fact_iter(5, 1)
的调用如下:
===> fact_iter(5, 1) ===> fact_iter(4, 5) ===> fact_iter(3, 20) ===> fact_iter(2, 60) ===> fact_iter(1, 120) ===> 120
尾递归调用时,如果做了优化,栈不会增长,因此,无论多少次调用也不会导致栈溢出。
遗憾的是,大多数编程语言没有针对尾递归做优化,Python解释器也没有做优化,所以,即使把上面的fact(n)
函数改成尾递归方式,也会导致栈溢出。
小结
使用递归函数的优点是逻辑简单清晰,缺点是过深的调用会导致栈溢出。
针对尾递归优化的语言可以通过尾递归防止栈溢出。尾递归事实上和循环是等价的,没有循环语句的编程语言只能通过尾递归实现循环。
Python标准的解释器没有针对尾递归做优化,任何递归函数都存在栈溢出的问题。