Redis bloom-filter使用

 

前期准备

redis原生并不带布隆过滤器,需要单独下载并自行编译和加载。

1.下载redisbloom插件(redis官网下载即可)

https://github.com/RedisLabsModules/redisbloom/

wget https://github.com/RedisLabsModules/rebloom/archive/v1.1.1.tar.gz

2.解压,cd、make,make后会生成rebloom.so文件

tar -zxvf v1.1.1.tar.gz
cd redisbloom-1.1.1/
make

3.配置redis.conf文件,在配置文件中加上,目录为rebloom.so文件的目录路径

loadmodule /目录/rebloom.so

4.重新启动redis

redis-server redis.conf

 

快速使用

创建filter:[bf.reserve  key  error_rate initial_size]

bf.reserve users 0.001 100000

bf.reserve命令有三个参数,分别是:

  • key:键
  • error_rate:期望错误率,期望错误率越低,需要的空间就越大。
  • capacity:初始容量,当实际元素的数量超过这个初始化容量时,误判率上升。

如果不使用bf.reserve命令创建,而是使用Redis自动创建的布隆过滤器,默认的error_rate是 0.01,capacity是 100。

隆过滤器的error_rate越小,需要的存储空间就越大,对于不需要过于精确的场景,error_rate设置稍大一点也可以。布隆过滤器的capacity设置的过大,会浪费存储空间,设置的过小,就会影响准确率,所以在使用之前一定要尽可能地精确估计好元素数量,还需要加上一定的冗余空间以避免实际元素可能会意外高出设置值很多。总之,error_rate和 capacity都需要设置一个合适的数值。

请查看:https://www.cnblogs.com/-wenli/p/12444639.html

添加元素:[bf.add  key  options]

 bf.add users user3

判断元素是否存在:[bf.exists  key  options]

bf.exists users user1

添加多个元素:[bf.add  key  ...options]

bf.madd users user4 user5 user6 user

判断多个元素是否存在:[bf.add  key  ...options]

bf.mexists users user4 user5 user6 user7 user8

 

posted @   -零  阅读(1588)  评论(0编辑  收藏  举报
编辑推荐:
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 基于Microsoft.Extensions.AI核心库实现RAG应用
· Linux系列:如何用heaptrack跟踪.NET程序的非托管内存泄露
· 开发者必知的日志记录最佳实践
阅读排行:
· TypeScript + Deepseek 打造卜卦网站:技术与玄学的结合
· Manus的开源复刻OpenManus初探
· AI 智能体引爆开源社区「GitHub 热点速览」
· 三行代码完成国际化适配,妙~啊~
· .NET Core 中如何实现缓存的预热?
点击右上角即可分享
微信分享提示