hdu 5288 OO’s Sequence 枚举+二分
Problem Description
OO has got a array A of size n ,defined a function f(l,r) represent the number of i (l<=i<=r) , that there's no j(l<=j<=r,j<>i) satisfy ai mod aj=0,now OO want to know
∑i=1n∑j=inf(i,j) mod (109+7).
Input
There are multiple test cases. Please process till EOF.
In each test case:
First line: an integer n(n<=10^5) indicating the size of array
Second line:contain n numbers ai(0<ai<=10000)
In each test case:
First line: an integer n(n<=10^5) indicating the size of array
Second line:contain n numbers ai(0<ai<=10000)
Output
For each tests: ouput a line contain a number ans.
Sample Input
5
1 2 3 4 5
Sample Output
23
Author
FZUACM
Source
题意:函数f(l,r)表示区间l,r中,不是区间中其他所有数的倍数的数的个数
直接暴力显然是不可以的
思路:
1.预处理出1~1e5每一个数的所有因子,O(nsqrt(n))
2.数组l[i],r[i],分别表示从i开始最左能够到达的位置和最右能够达到的位置,使得[l[i],r[i]]中,i不是任何数的倍数
那么现在就是求出l,r的问题了
pos[i]表示i在数组中出现的位置
对于a[i],我们枚举a[i]的所有因子,对于每一个因子,我们已经知道这个因子在数组中出现的位置,二分,然后更新l[i],r[i]
求出l,r数组后,
对于每一个数a[i],对答案的贡献=(i-l[i]+1)*(r[i]-i+1)
就可以了
#include<cstdio> #include<cstring> #include<algorithm> #include<vector> #define LL long long #define pb push_back using namespace std; const int maxn=1e5+5; const int mod=1e9+7; const int inf=0x3f3f3f3f; int a[maxn]; int l[maxn]; int r[maxn]; vector <int> di[maxn]; vector <int> pos[maxn]; void pre_init() { for(int i=1;i<maxn;i++){ for(int j=1;j*j<=i;j++){ if(i%j==0){ di[i].pb(j); if(i/j != j) di[i].pb(i/j); } } } } void init(int n) { for(int i=1;i<maxn;i++){ pos[i].clear(); } } void solve(int ); int main() { pre_init(); int n; while(~scanf("%d",&n)){ init(n); for(int i=1;i<=n;i++){ scanf("%d",&a[i]); pos[a[i]].pb(i); } solve(n); } return 0; } void solve(int n) { for(int i=1;i<=n;i++){ l[i]=1,r[i]=n; } for(int i=1;i<=n;i++){ for(int j=0;j<di[a[i]].size();j++){ int k=di[a[i]][j]; int left=0,right=pos[k].size()-1; if(right<left) continue; if(pos[k][left]<i){ while(right-left>1){ int mid=(left+right)>>1; if(pos[k][mid]>=i) right=mid; else left=mid; } if(pos[k][right]<i) l[i]=max(l[i],pos[k][right]+1); else l[i]=max(l[i],pos[k][left]+1); } left=0,right=pos[k].size()-1; if(pos[k][right]>i){ while(right-left>1){ int mid=(left+right)>>1; if(pos[k][mid]<=i) left=mid; else right=mid; } if(pos[k][left]>i) r[i]=min(r[i],pos[k][left]-1); else r[i]=min(r[i],pos[k][right]-1); } } } /* for(int i=1;i<=n;i++) printf("%d %d\n",l[i],r[i]); */ LL ret=0; for(int i=1;i<=n;i++){ ret+=(i-l[i]+1)*(r[i]-i+1)%mod; ret=(ret+mod)%mod; } printf("%I64d\n",ret); return ; }