CF577B Modulo Sum 好题

time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

You are given a sequence of numbers a1, a2, ..., an, and a number m.

Check if it is possible to choose a non-empty subsequence aij such that the sum of numbers in this subsequence is divisible by m.

Input

The first line contains two numbers, n and m (1 ≤ n ≤ 106, 2 ≤ m ≤ 103) — the size of the original sequence and the number such that sum should be divisible by it.

The second line contains n integers a1, a2, ..., an (0 ≤ ai ≤ 109).

Output

In the single line print either "YES" (without the quotes) if there exists the sought subsequence, or "NO" (without the quotes), if such subsequence doesn't exist.

Sample test(s)
input
3 5
1 2 3
output
YES
input
1 6
5
output
NO
input
4 6
3 1 1 3
output
YES
input
6 6
5 5 5 5 5 5
output
YES
Note

In the first sample test you can choose numbers 2 and 3, the sum of which is divisible by 5.

In the second sample test the single non-empty subsequence of numbers is a single number 5. Number 5 is not divisible by6, that is, the sought subsequence doesn't exist.

In the third sample test you need to choose two numbers 3 on the ends.

In the fourth sample test you can take the whole subsequence.

 

 

题意:

给出一个数列,和一个数m,问能不能从这个数列中选出若干个数,使得这些数的和可以整除m

 

整除m,也就是%m==0

 

其实是个很水的01背包,每个数取和不取

dp[i][j]表示选择到第i个数,和模m==j的情况有没有(有1,没有0)

 

但是我们会发现n很大,m很小

 

根据抽屉原理,当n>=m时,一定能

当n<m时,此时的数据大小<=1000,这个时候的dp,复杂度为n*m<m*m,可以过了

 

#include<cstdio>
#include<cstring>
#include<algorithm>

using namespace std;

const int maxm=1e3+10;
const int maxn=1e6+10;

int dp[maxm][maxm];
int a[maxn];

int main()
{
    int n,m;

    scanf("%d %d",&n,&m);
    for(int i=1;i<=n;++i){
        scanf("%d",&a[i]);
        a[i]%=m;
    }
    if(n>=m){
        printf("YES\n");
        return 0;
    }

    memset(dp,0,sizeof dp);

    for(int i=1;i<=n;i++){
        dp[i][a[i]]=1;
        for(int j=0;j<m;j++){
            if(dp[i-1][j]){
                dp[i][j]=true;
                dp[i][(j+a[i])%m]=true;
            }
        }
    }

    if(dp[n][0]>0)
        printf("YES\n");
    else
        printf("NO\n");

    return 0;
}

 

 

 

 

 

 

 

 

 

 

 

 

 

posted on 2015-09-24 00:17  _fukua  阅读(562)  评论(0编辑  收藏  举报