hdu 5363 组合数学 快速幂

Time Limit: 2000/1000 MS (Java/Others)  

Memory Limit: 131072/131072 K (Java/Others)


Problem Description
soda has a set S with n integers {1,2,,n}. A set is called key set if the sum of integers in the set is an even number. He wants to know how many nonempty subsets of S are key set.
 

 

Input
There are multiple test cases. The first line of input contains an integer T (1T105), indicating the number of test cases. For each test case:

The first line contains an integer n (1n109), the number of integers in the set.
 

 

Output
For each test case, output the number of key sets modulo 1000000007.
 

 

Sample Input
4 1 2 3 4
 

 

Sample Output
0 1 3 7
 

 

Author
zimpha@zju
 

 

Source
 
 
 
 
 
 
 
 
题意:给出一个数n,则有一个集合set={1,2,3,4,...,n}
问这个集合set有多少个非空子集,使得子集里面所有元素的和为偶数
 
我们知道(a+b)^n=C(n,0)a^0*b^n...
令a=b=1,得:2^n=C(n,0)+C(n,1)+C(n,2)+...+C(n,n-1)+C(n,n)
令a=1,b=-1,得:0=C(n,0)-C(n,1)+C(n,2)-C(n,3)+...-C(n,n-1)+C(n,n)
则有:C(n,0)+C(n,2)+..+C(n,n)=C(n,1)+C(n,3)+...+C(n,n-1)=2^(n-1)
 
 
对于给出的m,
当m=2*n时,有n个偶数,n个奇数,偶数可以选择0,1,2,3个等,奇数可以选择0,2,4,6个等
写出组合式,化简得:ans=2^(m-1)-1
-1是因为要减去空集的情况
当m=2*n-1时,同样化简可得:ans=2^(m-1)-1
 
则:ans=2^(m-1)-1
利用快速幂即可求。
 
 
 
#include<cstdio>
#include<cstring>

using namespace std;

#define ll long long

const int mod=1e9+7;

ll quick_pow(ll n)
{
    ll ret=1;
    ll x=2;
    while(n){
        if(n&1)
            ret=ret*x%mod;
        x=x*x%mod;
        n>>=1;
    }
    return ret;
}

int main()
{
    int test;
    scanf("%d",&test);

    while(test--){
        ll n;
        scanf("%I64d",&n);
        printf("%I64d\n",quick_pow(n-1)-1);
    }
    return 0;
}

 

 

 

 

 

 

 

 

 

 

 

 

 
posted on 2015-09-14 21:22  _fukua  阅读(243)  评论(0编辑  收藏  举报