POJ 3421 素数+组合数学
X-factor Chains
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 5741 | Accepted: 1808 |
Description
Given a positive integer X, an X-factor chain of length m is a sequence of integers,
1 = X0, X1, X2, …, Xm = X
satisfying
Xi < Xi+1 and Xi | Xi+1 where a | b means a perfectly divides into b.
Now we are interested in the maximum length of X-factor chains and the number of chains of such length.
Input
The input consists of several test cases. Each contains a positive integer X (X ≤ 220).
Output
For each test case, output the maximum length and the number of such X-factors chains.
Sample Input
2
3
4
10
100
Sample Output
1 1
1 1
2 1
2 2
4 6
Source
POJ Monthly--2007.10.06, ailyanlu@zsu
分析:
x=a1^p1*a2^p2*...*an^pn
由于要求构造的序列最长,我们从序列最后一个开始,每次除以x的一个素因子
而一共可以除以∑pi次,所以可以构造的最长的长度就是∑pi
而有多少种方式呢?
其实就等价于p1个a1,p2个a2,...,pn个an,可以有多少种排列方式
明显,有(∑pi) ! / (p1!*p2!*...*pn!)个排列。
预处理:打出素数表
但是这道题还是tle了2次,原因:
1.打素数表不够高效(现在的打表方式很好)
2.有个地方还可以有很大的优化,写在注释了
1 #include<cstdio> 2 #include<cstring> 3 #include<cmath> 4 5 using namespace std; 6 7 const int maxn=1050000; 8 9 bool is_prime[maxn]; 10 int prime[maxn>>1]; 11 int p[100]; 12 13 void init_prime() 14 { 15 memset(is_prime,true,sizeof is_prime); 16 int i; 17 is_prime[1]=false; 18 for(i=4;i<maxn;i+=2) 19 is_prime[i]=false; 20 int e=(int)(sqrt(0.0+maxn)+1.0); 21 int tot=1; 22 prime[tot++]=2; 23 for(i=3;i<e;i+=2) 24 { 25 if(is_prime[i]) 26 { 27 prime[tot++]=i; 28 int s; 29 for(int j=i*i,s=2*i;j<maxn;j+=s) 30 is_prime[j]=false; 31 //因为i为奇数,j也为奇数,j+奇数为偶数,不用考虑 32 //由于j<n,i*i<n,则i<sqrt(n) 33 } 34 } 35 for(;i<maxn;i+=2) 36 if(is_prime[i]) 37 prime[tot++]=i; 38 } 39 40 int main() 41 { 42 init_prime(); 43 int x; 44 while(~scanf("%d",&x)) 45 { 46 if(x==1) 47 { 48 printf("0 0\n"); 49 continue; 50 } 51 if(is_prime[x]) 52 { 53 printf("1 1\n"); 54 continue; 55 } 56 int cnt=1; 57 int tot=0; 58 while(x>1) 59 { 60 if(x%prime[cnt]==0) 61 { 62 tot++; 63 p[tot]=0; 64 while(x%prime[cnt]==0) 65 { 66 x/=prime[cnt]; 67 p[tot]++; 68 } 69 } 70 cnt++; 71 } 72 73 /* 74 刚开始的做法 75 memset(p,0,sizeof p); 76 while(x>1) 77 { 78 while(x%prime[cnt]==0) 79 { 80 x/=prime[cnt]; 81 p[cnt]++; 82 } 83 cnt++; 84 } 85 这样的做法,数组p在范围1~cnt会有很多的无谓的0 86 大大增加了后面循环的次数 87 而且数组p也必须开得很大 88 这样tle了 89 优化之后,数组p在范围1~tot没有0 90 tot相对于cnt小了很多 91 数组p也只要100就够了 92 一个优化,从tle到125ms 93 */ 94 95 int sum=0; 96 for(int i=1;i<=tot;i++) 97 sum+=p[i]; 98 long long ans=1; 99 for(int i=2;i<=sum;i++) 100 ans*=(long long)i; 101 for(int i=1;i<=tot;i++) 102 { 103 for(int j=2;j<=p[i];j++) 104 ans/=(long long)j; 105 } 106 printf("%d %lld\n",sum,ans); 107 } 108 return 0; 109 }