HDU 4864 Task 贪心 好题
Task
Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 4103 Accepted Submission(s): 1077
Problem Description
Today the company has m tasks to complete. The ith task need xi minutes to complete. Meanwhile, this task has a difficulty level yi. The machine whose level below this task’s level yi cannot complete this task. If the company completes this task, they will get (500*xi+2*yi) dollars.
The company has n machines. Each machine has a maximum working time and a level. If the time for the task is more than the maximum working time of the machine, the machine can not complete this task. Each machine can only complete a task one day. Each task can only be completed by one machine.
The company hopes to maximize the number of the tasks which they can complete today. If there are multiple solutions, they hopes to make the money maximum.
The company has n machines. Each machine has a maximum working time and a level. If the time for the task is more than the maximum working time of the machine, the machine can not complete this task. Each machine can only complete a task one day. Each task can only be completed by one machine.
The company hopes to maximize the number of the tasks which they can complete today. If there are multiple solutions, they hopes to make the money maximum.
Input
The input contains several test cases.
The first line contains two integers N and M. N is the number of the machines.M is the number of tasks(1 < =N <= 100000,1<=M<=100000).
The following N lines each contains two integers xi(0<xi<1440),yi(0=<yi<=100).xi is the maximum time the machine can work.yi is the level of the machine.
The following M lines each contains two integers xi(0<xi<1440),yi(0=<yi<=100).xi is the time we need to complete the task.yi is the level of the task.
The first line contains two integers N and M. N is the number of the machines.M is the number of tasks(1 < =N <= 100000,1<=M<=100000).
The following N lines each contains two integers xi(0<xi<1440),yi(0=<yi<=100).xi is the maximum time the machine can work.yi is the level of the machine.
The following M lines each contains two integers xi(0<xi<1440),yi(0=<yi<=100).xi is the time we need to complete the task.yi is the level of the task.
Output
For each test case, output two integers, the maximum number of the tasks which the company can complete today and the money they will get.
Sample Input
1 2
100 3
100 2
100 1
Sample Output
1 50004
Author
FZU
Source
题意:有m个任务,每一个任务有完成需要的时间,和完成的难度水平level
现在有n台机器,每台任务有工作的最大时间,和可以完成的任务的最大难度。
完成一个任务可以获得奖金time*500+level*2
要求:
机器可以完成的条件是:最大时间>=任务的时间,最大level>=任务的level
每个任务只能由一台机器完成
每台机器只能完成一个任务
现在要求:完成尽量多的任务,多种情况的时候,尽量使得奖金最多。
一看就觉得是贪心
这道题,开始的思路:
优先按奖金大到小排序,再2个下标一次在任务和机器移动,这样不是最优解
这样有3个因素:奖金,时间,level,无法贪心
后来发现:时间的数据范围,和level的数据范围很特殊,可以证明:
若优先按时间从大到小排序后,前面的任务和后面的任务,无论level的差距多大,完成前面的任务的奖金一定不低于完成后面的任务。
这样通过排序后,我们需要考虑的因素就只有2个:时间,level
这样就把奖金的影响消去了。
所以:我们可以先把任务和机器按时间大到小排序,时间相同按照level大到小排序。
这样只要我们考虑任务的时候,从大到小,就可以保证奖金一定是最多的。
接着:我是用2个下标分别指向任务的开头和机器的开头,然后不断后移,贪心选取可以完成的任务。
但是这样无法得到最优,给组数据
任务:(90,90),(50,100)
机器:(100,100),(90,90)
所以要怎么办呢?
根据贪心:我们排序任务和机器后:应该做的是:
对于每一个任务:找出可以完成这个任务的所有机器中,level最低的那一个来完成。
因为这些机器的时间满足这个任务,必然也满足这个任务后面所有的任务,但是可能后面的任务的level非常大
所以我们要尽量保留level大的机器以备后面任务的使用。
这道题自己收获还是挺大的,数据要仔细研究,可能会有一些隐含条件。
1 #include<cstdio> 2 #include<cstring> 3 #include<algorithm> 4 5 using namespace std; 6 7 const int maxn=100000+10; 8 9 struct Node 10 { 11 int time,level; 12 }; 13 14 Node mac[maxn]; 15 Node task[maxn]; 16 17 bool cmp(Node a,Node b) 18 { 19 if(a.time==b.time) 20 return a.level>b.level; 21 return a.time>b.time; 22 } 23 24 inline int ret(int x) 25 { 26 return task[x].time*500+task[x].level*2; 27 } 28 29 int cnt[105]; 30 31 int main() 32 { 33 int M,N; 34 while(~scanf("%d%d",&N,&M)) 35 { 36 for(int i=1;i<=N;i++) 37 { 38 scanf("%d%d",&mac[i].time,&mac[i].level); 39 } 40 41 for(int i=1;i<=M;i++) 42 { 43 scanf("%d%d",&task[i].time,&task[i].level); 44 } 45 46 sort(mac+1,mac+N+1,cmp); 47 sort(task+1,task+M+1,cmp); 48 49 int ans=0; 50 long long sum=0; 51 52 memset(cnt,0,sizeof(cnt)); 53 54 int j=1; 55 for(int i=1;i<=M;i++) 56 { 57 while(j<=N&&mac[j].time>=task[i].time) 58 { 59 cnt[mac[j].level]++; 60 j++; 61 } 62 for(int k=task[i].level;k<=100;k++) 63 { 64 if(cnt[k]) 65 { 66 cnt[k]--; 67 sum+=(long long)ret(i); 68 ans++; 69 break; 70 } 71 } 72 } 73 printf("%d %I64d\n",ans,sum); 74 } 75 return 0; 76 }