POJ 3250 Bad Hair Day 简单DP 好题

Description

Some of Farmer John's N cows (1 ≤ N ≤ 80,000) are having a bad hair day! Since each cow is self-conscious about her messy hairstyle, FJ wants to count the number of other cows that can see the top of other cows' heads.

Each cow i has a specified height hi (1 ≤ h≤ 1,000,000,000) and is standing in a line of cows all facing east (to the right in our diagrams). Therefore, cow i can see the tops of the heads of cows in front of her (namely cows i+1, i+2, and so on), for as long as these cows are strictly shorter than cow i.

Consider this example:

        =
=       =
=   -   =         Cows facing right -->
=   =   =
= - = = =
= = = = = =
1 2 3 4 5 6

Cow#1 can see the hairstyle of cows #2, 3, 4
Cow#2 can see no cow's hairstyle
Cow#3 can see the hairstyle of cow #4
Cow#4 can see no cow's hairstyle
Cow#5 can see the hairstyle of cow 6
Cow#6 can see no cows at all!

Let ci denote the number of cows whose hairstyle is visible from cow i; please compute the sum of c1 through cN.For this example, the desired is answer 3 + 0 + 1 + 0 + 1 + 0 = 5.

Input

Line 1: The number of cows, N
Lines 2..N+1: Line i+1 contains a single integer that is the height of cow i.

Output

Line 1: A single integer that is the sum of c1 through cN.

Sample Input

6
10
3
7
4
12
2

Sample Output

5





题意: 有n头牛从左到右排成一行,从左到右编号为1~n,并且牛的头是朝向右的,即每头牛只可以看到他们右边的牛。
现在给出n头牛的身高,设c[i]表示第i头牛可以看到多少头牛的头顶。
求所有c[i]的和。

简单DP


设dp[i]表示第i头牛在看的时候是被第dp[i]头牛挡住视线的,即i+1~dp[i]-1这个区间的牛都可以被第i头牛看到。
所以第i头牛看到的数目为:dp[i]-i-1




这道题也可以用栈来做。


 1 #include<cstdio>
 2 #include<cstring>
 3 #include<algorithm>
 4 
 5 const int maxn=80000+5;
 6 const long long inf=0x3f3f3f3f;
 7 
 8 #define LL long long
 9 
10 LL h[maxn];
11 LL dp[maxn];
12 
13 int main()
14 {
15     int n;
16     while(~scanf("%d",&n))
17     {
18         for(int i=1;i<=n;i++)
19         {
20             scanf("%lld",&h[i]);
21         }
22         n++;
23         h[0]=h[n]=inf;
24 
25         for(int i=n-1;i>0;i--)
26         {
27             int tmp=i+1;
28             dp[i]=i+1;
29             while(h[i]>h[tmp])
30             {
31                 dp[i]=dp[tmp];
32                 tmp=dp[tmp];
33             }
34         }
35         LL ans=0;
36         for(int i=1;i<n;i++)
37         {
38             ans+=(dp[i]-i-1);
39         }
40         printf("%lld\n",ans);
41     }
42     return 0;
43 }
188ms

 















posted on 2015-05-29 22:48  _fukua  阅读(223)  评论(0编辑  收藏  举报