HDU 2874 Connections between cities LCA水题 注意是森林,不是树
Problem Description
After World War X, a lot of cities have been seriously damaged, and we need to rebuild those cities. However, some materials needed can only be produced in certain places. So we need to transport these materials from city to city. For most of roads had been totally destroyed during the war, there might be no path between two cities, no circle exists as well.
Now, your task comes. After giving you the condition of the roads, we want to know if there exists a path between any two cities. If the answer is yes, output the shortest path between them.
Now, your task comes. After giving you the condition of the roads, we want to know if there exists a path between any two cities. If the answer is yes, output the shortest path between them.
Input
Input consists of multiple problem instances.For each instance, first line contains three integers n, m and c, 2<=n<=10000, 0<=m<10000, 1<=c<=1000000. n represents the number of cities numbered from 1 to n. Following m lines, each line has three integers i, j and k, represent a road between city i and city j, with length k. Last c lines, two integers i, j each line, indicates a query of city i and city j.
Output
For each problem instance, one line for each query. If no path between two cities, output “Not connected”, otherwise output the length of the shortest path between them.
Sample Input
5 3 2
1 3 2
2 4 3
5 2 3
1 4
4 5
Sample Output
Not connected
6
注意:这道题不一定是树,有可能是森林,
只要学树链剖分,加一个top[i] 表示节点i的根是top[i] 就好啦。
length=siz[u]+siz[v]-2*siz[lca(u,v)]
1 #include<cstdio> 2 #include<algorithm> 3 #include<cstring> 4 5 using namespace std; 6 7 #define LL long long 8 9 const int maxn=10000+5; 10 11 struct edge 12 { 13 int to,w,next; 14 }edge[maxn<<1]; 15 int head[maxn]; 16 int tot; 17 18 int siz[maxn]; 19 int dep[maxn]; 20 int p[maxn][25]; 21 int top[maxn]; 22 23 void init(int n) 24 { 25 tot=0; 26 memset(head,-1,sizeof(head)); 27 memset(siz,-1,sizeof(siz)); 28 memset(dep,0,sizeof(dep)); 29 30 for(int i=1;i<=n;i++) 31 top[i]=i; 32 33 for(int i=1;i<=n;i++) 34 for(int j=0;j<25;j++) 35 p[i][j]=-1; 36 } 37 38 void addedge(int u,int v,int w) 39 { 40 edge[tot].to=v; 41 edge[tot].w=w; 42 edge[tot].next=head[u]; 43 head[u]=tot++; 44 } 45 46 void dfs(int u) 47 { 48 for(int i=head[u];~i;i=edge[i].next) 49 { 50 int v=edge[i].to; 51 int w=edge[i].w; 52 if(!dep[v]) 53 { 54 siz[v]=siz[u]+w; 55 dep[v]=dep[u]+1; 56 p[v][0]=u; 57 top[v]=top[u]; 58 dfs(v); 59 } 60 } 61 } 62 63 void init_lca(int n) 64 { 65 for(int j=1;(1<<j)<=n;j++) 66 { 67 for(int i=1;i<=n;i++) 68 { 69 if(p[i][j-1]!=-1) 70 { 71 p[i][j]=p[p[i][j-1]][j-1]; 72 } 73 } 74 } 75 } 76 77 LL solve(int n,int u,int v) 78 { 79 if(dep[u]<dep[v]) 80 swap(u,v); 81 82 int init_u=u; 83 int init_v=v; 84 85 int cnt; 86 for(cnt=0;(1<<cnt)<=dep[u];cnt++) 87 ; 88 cnt--; 89 90 for(int j=cnt;j>=0;j--) 91 { 92 if(dep[u]-(1<<j)>=dep[v]) 93 u=p[u][j]; 94 } 95 if(u==v) 96 return (LL)(siz[init_u]-siz[v]); 97 else 98 { 99 for(int j=cnt;j>=0;j--) 100 { 101 if(p[u][j]!=-1&&p[u][j]!=p[v][j]) 102 { 103 u=p[u][j]; 104 v=p[v][j]; 105 } 106 } 107 return (LL)(siz[init_u]+siz[init_v]-2*siz[p[u][0]]); 108 } 109 } 110 111 int main() 112 { 113 int n; 114 while(scanf("%d",&n)!=EOF) 115 { 116 int m,c; 117 scanf("%d%d",&m,&c); 118 119 init(n); 120 121 for(int i=1;i<=m;i++) 122 { 123 int u,v,w; 124 scanf("%d%d%d",&u,&v,&w); 125 addedge(u,v,w); 126 addedge(v,u,w); 127 } 128 129 for(int i=1;i<=n;i++) 130 { 131 if(siz[i]==-1) 132 { 133 siz[i]=0; 134 dfs(i); 135 } 136 } 137 138 init_lca(n); 139 140 for(int i=0;i<c;i++) 141 { 142 int u,v; 143 scanf("%d%d",&u,&v); 144 145 if(top[u]!=top[v]) 146 { 147 printf("Not connected\n"); 148 } 149 else 150 { 151 printf("%lld\n",solve(n,u,v)); 152 } 153 } 154 155 } 156 157 return 0; 158 }