线程面试题Ⅶ

1、CyclicBarrier、CountDownLatch、Semaphore 的用法
  CountDownLatch(线程计数器 )
    CountDownLatch 类位于 java.util.concurrent 包下,利用它可以实现类似计数器的功能。比如有一个任务 A,它要等待其他 4 个任务执行完毕之后才能执行,此时就可以利用 CountDownLatch来实现这种功能了。
  CyclicBarrier(回环栅栏-等待至 barrier 状态再全部同时执行)
    通过它可以实现让一组线程等待至某个状态之后再全部同时执行。叫做回环。是因为当所有等待线程都被释放以后,CyclicBarrier 可以被重用。我们暂且把这个状态就叫做barrier,当调用 await()方法之后,线程就处于 barrier 了。CyclicBarrier 中最重要的方法就是 await 方法,它有 2 个重载版本:
    1. public int await():用来挂起当前线程,直至所有线程都到达 barrier 状态再同时执行后续任务;
    2. public int await(long timeout, TimeUnit unit):让这些线程等待至一定的时间,如果还有线程没有到达 barrier 状态就直接让到达 barrier 的线程执行后续任务。
  Semaphore(信号量-控制同时访问的线程个数)
    Semaphore 翻译成字面意思为 信号量,Semaphore 可以控制同时访问的线程个数,通过acquire() 获取一个许可,如果没有就等待,而 release() 释放一个许可。
    Semaphore 类中比较重要的几个方法:
      1. public void acquire(): 用来获取一个许可,若无许可能够获得,则会一直等待,直到获得许可。
      2. public void acquire(int permits):获取 permits 个许可
      3. public void release() { } :释放许可。注意,在释放许可之前,必须先获获得许可。
      4. public void release(int permits) { }:释放 permits 个许可
    上面 4 个方法都会被阻塞,如果想立即得到执行结果,可以使用下面几个方法
    1. public boolean tryAcquire():尝试获取一个许可,若获取成功,则立即返回 true,若获取失败,则立即返回 false
    2. public boolean tryAcquire(long timeout, TimeUnit unit):尝试获取一个许可,若在指定的时间内获取成功,则立即返回 true,否则则立即返回 false
    3. public boolean tryAcquire(int permits):尝试获取 permits 个许可,若获取成功,则立即返回 true,若获取失败,则立即返回 false
    4. public boolean tryAcquire(int permits, long timeout, TimeUnit unit): 尝试获取 permits个许可,若在指定的时间内获取成功,则立即返回 true,否则则立即返回 false
    5. 还可以通过 availablePermits()方法得到可用的许可数目。
    CountDownLatch 和 CyclicBarrier 都能够实现线程之间的等待,只不过它们侧重点不同;CountDownLatch 一般用于某个线程 A 等待若干个其他线程执行完任务之后,它才执行;而 CyclicBarrier 一般用于一组线程互相等待至某个状态,然后这一组线程再同时执行;另外,CountDownLatch 是不能够重用的,而 CyclicBarrier 是可以重用的。
    Semaphore 其实和锁有点类似,它一般用于控制对某组资源的访问权限。
2、volatile 关键字的作用(变量可见性、禁止重排序)
  Java 语言提供了一种稍弱的同步机制,即 volatile 变量,用来确保将变量的更新操作通知到其他线程。volatile 变量具备两种特性,volatile 变量不会被缓存在寄存器或者对其他处理器不可见的地方,因此在读取 volatile 类型的变量时总会返回最新写入的值。
  变量可见性
    其一是保证该变量对所有线程可见,这里的可见性指的是当一个线程修改了变量的值,那么新的值对于其他线程是可以立即获取的。
  禁止重排序
    volatile 禁止了指令重排。
  比 sychronized 更轻量级的同步锁
    在访问 volatile 变量时不会执行加锁操作,因此也就不会使执行线程阻塞,因此 volatile 变量是一种比 sychronized 关键字更轻量级的同步机制。volatile 适合这种场景:一个变量被多个线程共享,线程直接给这个变量赋值。
    当对非 volatile 变量进行读写的时候,每个线程先从内存拷贝变量到 CPU 缓存中。如果计算机有多个 CPU,每个线程可能在不同的 CPU 上被处理,这意味着每个线程可以拷贝到不同的 CPUcache 中。而声明变量是 volatile 的,JVM 保证了每次读变量都从内存中读,跳过 CPU cache这一步。
  适用场景
    值得说明的是对 volatile 变量的单次读/写操作可以保证原子性的,如 long 和 double 类型变量,但是并不能保证 i++这种操作的原子性,因为本质上 i++是读、写两次操作。在某些场景下可以代替 Synchronized。但是,volatile 的不能完全取代 Synchronized 的位置,只有在一些特殊的场景下,才能适用 volatile。总的来说,必须同时满足下面两个条件才能保证在并发环境的线程安全:
      (1)对变量的写操作不依赖于当前值(比如 i++),或者说是单纯的变量赋值(booleanflag = true)。
      (2)该变量没有包含在具有其他变量的不变式中,也就是说,不同的 volatile 变量之间,不能互相依赖。只有在状态真正独立于程序内其他内容时才能使用 volatile。  
3、如何在两个线程之间共享数据
  Java 里面进行多线程通信的主要方式就是共享内存的方式,共享内存主要的关注点有两个:可见性和有序性原子性。Java 内存模型(JMM)解决了可见性和有序性的问题,而锁解决了原子性的问题,理想情况下我们希望做到“同步”和“互斥”。有以下常规实现方法:
    将数据抽象成一个类,并将数据的操作作为这个类的方法
      将数据抽象成一个类,并将对这个数据的操作作为这个类的方法,这么设计可以和容易做到同步,只要在方法上加”synchronized“
    Runnable 对象作为一个类的内部类
      将 Runnable 对象作为一个类的内部类,共享数据作为这个类的成员变量,每个线程对共享数据的操作方法也封装在外部类,以便实现对数据的各个操作的同步和互斥,作为内部类的各个 Runnable 对象调用外部类的这些方法。
4、ThreadLocal 作用(线程本地存储)
  ThreadLocal,很多地方叫做线程本地变量,也有些地方叫做线程本地存储,ThreadLocal 的作用是提供线程内的局部变量,这种变量在线程的生命周期内起作用,减少同一个线程内多个函数或者组件之间一些公共变量的传递的复杂度。
  ThreadLocalMap(线程的一个属性)
    1. 每个线程中都有一个自己的 ThreadLocalMap 类对象,可以将线程自己的对象保持到其中,各管各的,线程可以正确的访问到自己的对象。
    2. 将一个共用的 ThreadLocal 静态实例作为 key,将不同对象的引用保存到不同线程的ThreadLocalMap 中,然后在线程执行的各处通过这个静态 ThreadLocal 实例的 get()方法取得自己线程保存的那个对象,避免了将这个对象作为参数传递的麻烦。
    3. ThreadLocalMap 其实就是线程里面的一个属性,它在 Thread 类中定义    ThreadLocal.ThreadLocalMap threadLocals = null;
  使用场景
    最常见的 ThreadLocal 使用场景为 用来解决 数据库连接、Session 管理等。
5、synchronized 和 ReentrantLock 的区别
  两者的共同点:
    1. 都是用来协调多线程对共享对象、变量的访问
    2. 都是可重入锁,同一线程可以多次获得同一个锁
    3. 都保证了可见性和互斥性
  两者的不同点:
    1. ReentrantLock 显示的获得、释放锁,synchronized 隐式获得释放锁
    2. ReentrantLock 可响应中断、可轮回,synchronized 是不可以响应中断的,为处理锁的不可用性提供了更高的灵活性
    3. ReentrantLock 是 API 级别的,synchronized 是 JVM 级别的
    4. ReentrantLock 可以实现公平锁
    5. ReentrantLock 通过 Condition 可以绑定多个条件
    6. 底层实现不一样, synchronized 是同步阻塞,使用的是悲观并发策略,lock 是同步非阻塞,采用的是乐观并发策略
    7. Lock 是一个接口,而 synchronized 是 Java 中的关键字,synchronized 是内置的语言实现。
    8. synchronized 在发生异常时,会自动释放线程占有的锁,因此不会导致死锁现象发生;而 Lock 在发生异常时,如果没有主动通过 unLock()去释放锁,则很可能造成死锁现象,因此使用 Lock 时需要在 finally 块中释放锁。
    9. Lock 可以让等待锁的线程响应中断,而 synchronized 却不行,使用 synchronized 时,等待的线程会一直等待下去,不能够响应中断。
    10. 通过 Lock 可以知道有没有成功获取锁,而 synchronized 却无法办到。
    11. Lock 可以提高多个线程进行读操作的效率,既就是实现读写锁等。
6、ConcurrentHashMap 并发
  减小锁粒度
    减小锁粒度是指缩小锁定对象的范围,从而减小锁冲突的可能性,从而提高系统的并发能力。减小锁粒度是一种削弱多线程锁竞争的有效手段,这种技术典型的应用是 ConcurrentHashMap(高性能的 HashMap)类的实现。对于 HashMap 而言,最重要的两个方法是 get 与 set 方法,如果我们对整个 HashMap 加锁,可以得到线程安全的对象,但是加锁粒度太大。Segment 的大小也被称为 ConcurrentHashMap 的并发度。
  ConcurrentHashMap 分段锁
    ConcurrentHashMap,它内部细分了若干个小的 HashMap,称之为段(Segment)。默认情况下一个 ConcurrentHashMap 被进一步细分为 16 个段,既就是锁的并发度。如果需要在 ConcurrentHashMap 中添加一个新的表项,并不是将整个 HashMap 加锁,而是首先根据 hashcode 得到该表项应该存放在哪个段中,然后对该段加锁,并完成 put 操作。在多线程环境中,如果多个线程同时进行 put操作,只要被加入的表项不存放在同一个段中,则线程间可以做到真正的并行。
    ConcurrentHashMap 是由 Segment 数组结构和 HashEntry 数组结构组成
      ConcurrentHashMap 是由 Segment 数组结构和 HashEntry 数组结构组成。Segment 是一种可重入锁 ReentrantLock,在 ConcurrentHashMap 里扮演锁的角色,HashEntry 则用于存储键值对数据。一个 ConcurrentHashMap 里包含一个 Segment 数组,Segment 的结构和 HashMap类似,是一种数组和链表结构, 一个 Segment 里包含一个 HashEntry 数组,每个 HashEntry 是一个链表结构的元素, 每个 Segment 守护一个 HashEntry 数组里的元素,当对 HashEntry 数组的数据进行修改时,必须首先获得它对应的 Segment 锁。
7、Java 中用到的线程调度
  抢占式调度
    抢占式调度指的是每条线程执行的时间、线程的切换都由系统控制,系统控制指的是在系统某种运行机制下,可能每条线程都分同样的执行时间片,也可能是某些线程执行的时间片较长,甚至某些线程得不到执行的时间片。在这种机制下,一个线程的堵塞不会导致整个进程堵塞。
  协同式调度
    协同式调度指某一线程执行完后主动通知系统切换到另一线程上执行,这种模式就像接力赛一样,一个人跑完自己的路程就把接力棒交接给下一个人,下个人继续往下跑。线程的执行时间由线程本身控制,线程切换可以预知,不存在多线程同步问题,但它有一个致命弱点:如果一个线程编写有问题,运行到一半就一直堵塞,那么可能导致整个系统崩溃。
  JVM 的线程调度实现(抢占式调度)
    java 使用的线程调使用抢占式调度,Java 中线程会按优先级分配 CPU 时间片运行,且优先级越高越优先执行,但优先级高并不代表能独自占用执行时间片,可能是优先级高得到越多的执行时间片,反之,优先级低的分到的执行时间少但不会分配不到执行时间。
  线程让出 cpu 的情况
    1. 当前运行线程主动放弃 CPU,JVM 暂时放弃 CPU 操作(基于时间片轮转调度的 JVM 操作系统不会让线程永久放弃 CPU,或者说放弃本次时间片的执行权),例如调用 yield()方法。
    2. 当前运行线程因为某些原因进入阻塞状态,例如阻塞在 I/O 上。
    3. 当前运行线程结束,即运行完 run()方法里面的任务。
8、进程调度算法
  优先调度算法
    先来先服务调度算法(FCFS)
      当在作业调度中采用该算法时,每次调度都是从后备作业队列中选择一个或多个最先进入该队列的作业,将它们调入内存,为它们分配资源、创建进程,然后放入就绪队列。在进程调度中采用 FCFS 算法时,则每次调度是从就绪队列中选择一个最先进入该队列的进程,为之分配处理机,使之投入运行。该进程一直运行到完成或发生某事件而阻塞后才放弃处理机,特点是:算法比较简单,可以实现基本上的公平。
    短作业(进程)优先调度算法
      短作业优先(SJF)的调度算法是从后备队列中选择一个或若干个估计运行时间最短的作业,将它们调入内存运行。而短进程优先(SPF)调度算法则是从就绪队列中选出一个估计运行时间最短的进程,将处理机分配给它,使它立即执行并一直执行到完成,或发生某事件而被阻塞放弃处理机时再重新调度。该算法未照顾紧迫型作业。
  高优先权优先调度算法
    为了照顾紧迫型作业,使之在进入系统后便获得优先处理,引入了最高优先权优先(FPF)调度算法。当把该算法用于作业调度时,系统将从后备队列中选择若干个优先权最高的作业装入内存。当用于进程调度时,该算法是把处理机分配给就绪队列中优先权最高的进程。
    非抢占式优先权算法
      在这种方式下,系统一旦把处理机分配给就绪队列中优先权最高的进程后,该进程便一直执行下去,直至完成;或因发生某事件使该进程放弃处理机时。这种调度算法主要用于批处理系统中;也可用于某些对实时性要求不严的实时系统中。
    抢占式优先权调度算法
      在这种方式下,系统同样是把处理机分配给优先权最高的进程,使之执行。但在其执行期间,只要又出现了另一个其优先权更高的进程,进程调度程序就立即停止当前进程(原优先权最高的进程)的执行,重新将处理机分配给新到的优先权最高的进程。显然,这种抢占式的优先权调度算法能更好地满足紧迫作业的要求,故而常用于要求比较严格的实时系统中,以及对性能要求较高的批处理和分时系统中。
    高响应比优先调度算法
      在批处理系统中,短作业优先算法是一种比较好的算法,其主要的不足之处是长作业的运行得不到保证。如果我们能为每个作业引入前面所述的动态优先权,并使作业的优先级随着等待时
间的增加而以速率 a 提高,则长作业在等待一定的时间后,必然有机会分配到处理机。该优先权的变化规律可描述为:
      
      (1) 如果作业的等待时间相同,则要求服务的时间愈短,其优先权愈高,因而该算法有利于短作业。
      (2) 当要求服务的时间相同时,作业的优先权决定于其等待时间,等待时间愈长,其优先权愈高,因而它实现的是先来先服务。
      (3) 对于长作业,作业的优先级可以随等待时间的增加而提高,当其等待时间足够长时,其优先级便可升到很高,从而也可获得处理机。简言之,该算法既照顾了短作业,又考虑了作业到
达的先后次序,不会使长作业长期得不到服务。因此,该算法实现了一种较好的折衷。当然,在利用该算法时,每要进行调度之前,都须先做响应比的计算,这会增加系统开销。 
  基于时间片的轮转调度算法
    时间片轮转法
      在早期的时间片轮转法中,系统将所有的就绪进程按先来先服务的原则排成一个队列,每次调度时,把 CPU 分配给队首进程,并令其执行一个时间片。时间片的大小从几 ms 到几百 ms。当执行
的时间片用完时,由一个计时器发出时钟中断请求,调度程序便据此信号来停止该进程的执行,并将它送往就绪队列的末尾;然后,再把处理机分配给就绪队列中新的队首进程,同时也让它执行一个时间片。这样就可以保证就绪队列中的所有进程在一给定的时间内均能获得一时间片的处理机执行时间。
    多级反馈队列调度算法 
      (1) 应设置多个就绪队列,并为各个队列赋予不同的优先级。第一个队列的优先级最高,第二个队列次之,其余各队列的优先权逐个降低。该算法赋予各个队列中进程执行时间片的大小也各不相同,在优先权愈高的队列中,为每个进程所规定的执行时间片就愈小。例如,第二个队列的时间片要比第一个队列的时间片长一倍,……,第 i+1 个队列的时间片要比第 i 个队列的时间片长一倍。
      (2) 当一个新进程进入内存后,首先将它放入第一队列的末尾,按 FCFS 原则排队等待调度。当轮到该进程执行时,如它能在该时间片内完成,便可准备撤离系统;如果它在一个时间片结束时
尚未完成,调度程序便将该进程转入第二队列的末尾,再同样地按 FCFS 原则等待调度执行;如果它在第二队列中运行一个时间片后仍未完成,再依次将它放入第三队列,……,如此下去,当一个长作业(进程)从第一队列依次降到第 n 队列后,在第 n 队列便采取按时间片轮转的方式运行。 
      (3) 仅当第一队列空闲时,调度程序才调度第二队列中的进程运行;仅当第 1~(i-1)队列均空时,才会调度第 i 队列中的进程运行。如果处理机正在第 i 队列中为某进程服务时,又有新进程进入优
先权较高的队列(第 1~(i-1)中的任何一个队列),则此时新进程将抢占正在运行进程的处理机,即由调度程序把正在运行的进程放回到第 i 队列的末尾,把处理机分配给新到的高优先权进程。
      在多级反馈队列调度算法中,如果规定第一个队列的时间片略大于多数人机交互所需之处理时间时,便能够较好的满足各种类型用户的需要。 
posted @ 2020-06-29 16:59  朝暮的小知识  阅读(181)  评论(0编辑  收藏  举报