算法作业11——最优前缀编码

1. 

给定字符集C={x1,x2,...,xn}和每个字符的频率f(xi),求关于C的一个最优前缀码。

2. 解析

①二元前缀码 :任何字符的代码不能作为其他字符代码的前缀

②利用二元前缀码译码 :从第一个字符开始一次读入每个字符(0 或 1),如果发现读到的子串与某个码字相等,就将这个子串译作对应的码字;然后从下一个字符开始继续这个过程,直到读完输入的字符串为止。

③二元前缀编码存储 :二叉树结构,每个字符作为树叶,对应这个字符的前缀码看作根到这片树叶的一条路径,每个结点通向左二子的边记作 0,通向右儿子的边记作 1.

④构造最优前缀码的贪心算法就是哈夫曼算法(Huffman):

假设有n个权值,则构造出的哈夫曼树有n个叶子结点。 n个权值分别设为 w1,w2,…,wn,哈夫曼树的构造规则为:

  1. 将w1,w2,…,wn看成是有n 棵树的森林(每棵树仅有一个结点);

  2. 在森林中选出根结点的权值最小的两棵树进行合并,作为一棵新树的左、右子树,且新树的根结点权值为其左、右子树根结点权值之和;

  3. 从森林中删除选取的两棵树,并将新树加入森林;

  4. 重复(02)、(03)步,直到森林中只剩一棵树为止,该树即为所求得的哈夫曼树。

 

实例:

{5,6,7,8,15}

->{7,8,11,15} ->{11,15,15}

->{15,26} ->{41}

3. 设计

  1. 建树(父节点、左孩子、右孩子、权值)
  2. 初始化(父节点=-1、左孩子=-1、右孩子=-1、权值=0)
  3. 按照权值从小到大排序,记录最小和次小根节点的序号和权值,建新树。最小节点是左孩子,次小节点是右孩子,最小和次小根节点的权值和作为新树根节点的权值加到权值序列中。
  4. 重复3的步骤,直到只剩一棵单独的树。

4. 分析

for循环 O(n),插入操作 O(logn),

算法时间复杂度是 O(nlogn)

5. 源码

https://github.com/2579081436/algorithm.github.io

posted @ 2021-05-24 18:12  Caecae_with_island  阅读(632)  评论(0编辑  收藏  举报