Processing math: 6%

差分+树状数组【p4868】Preprefix sum

Description

前缀和(prefix sum)Si=ik=1ai

前前缀和(preprefix sum) 则把S_i作为原序列再进行前缀和。记再次求得前缀和第i个是SS_i

给一个长度n的序列a_1, a_2, \cdots, a_n有两种操作:

  1. Modify i x:把a_i改成x
  2. Query i:查询SS_i

Input

第一行给出两个整数N,M。分别表示序列长度和操作个数

接下来一行有N个数,即给定的序列a1,a2,....an

接下来M行,每行对应一个操作,格式见题目描述

Output

对于每个询问操作,输出一行,表示所询问的SSi的值。

显然,这是差分+树状数组

题目中给定的a_i就是我们的差分数组。

不会差分的小伙汁,来这里

安利很好的写树状数组的博客.

然后推一下式子.

如果我们修改差分数组a_i,显然,S_i会变化.

S_i=S_{i-1}+a_i

现在变成了

S_i=S_{i-1}+x

那么差值就变成了x-a_i

那么,我们就add(i,x-a[i]),不要忘了最后将a_i变为x

代码

#include<cstdio>
#include<algorithm>
#include<iostream>
#define int long long
#define R register
using namespace std;
inline void in(int &x)
{
	int f=1;x=0;char s=getchar();
	while(!isdigit(s)){if(s=='-')f=-1;s=getchar();}
	while(isdigit(s)){x=x*10+s-'0';s=getchar();}
	x*=f;
}
int n,m,last,t1[1000008],t2[1000008],a[1000008];
#define lowbit(x) x&-x
inline void add(int pos,int x)
{
	for(R int i=pos;i<=n;i+=lowbit(i))
		t1[i]+=x,t2[i]+=pos*x;
}
inline int query(int pos)
{
	R int res=0;
	for(R int i=pos;i;i-=lowbit(i))
		res+=t1[i]*(pos+1)-t2[i];
	return res;
}
char opt[8];
signed main()
{
	in(n),in(m);
	for(R int i=1,x;i<=n;i++)
	{
		in(a[i]);
		add(i,a[i]);
	}
	for(R int i=1,x,y;i<=m;i++)
	{
		scanf("%s",opt+1);
		if(opt[1]=='Q')
		{
			in(x);
			printf("%lld\n",query(x));
		}
		else
		{
			in(x),in(y);
			add(x,y-a[x]);
			a[x]=y;
		}
	}
}
posted @   顾z  阅读(295)  评论(0编辑  收藏  举报
编辑推荐:
· .NET 9 new features-C#13新的锁类型和语义
· Linux系统下SQL Server数据库镜像配置全流程详解
· 现代计算机视觉入门之:什么是视频
· 你所不知道的 C/C++ 宏知识
· 聊一聊 操作系统蓝屏 c0000102 的故障分析
阅读排行:
· DeepSeek V3 两周使用总结
· 回顾我的软件开发经历(1)
· C#使用yield关键字提升迭代性能与效率
· 低成本高可用方案!Linux系统下SQL Server数据库镜像配置全流程详解
· 4. 使用sql查询excel内容
点击右上角即可分享
微信分享提示