扩展欧拉定理【p4139】上帝与集合的正确用法
Description
根据一些书上的记载,上帝的一次失败的创世经历是这样的:
第一天, 上帝创造了一个世界的基本元素,称做“元”。
第二天, 上帝创造了一个新的元素,称作“α”。“α”被定义为“元”构成的集合。容易发现,一共有两种不同的“α”。
第三天, 上帝又创造了一个新的元素,称作“β”。“β”被定义为“α”构成的集合。容易发现,一共有四种不同的“β”。
第四天, 上帝创造了新的元素“γ”,“γ”被定义为“β”的集合。显然,一共会有16种不同的“γ”。
如果按照这样下去,上帝创造的第四种元素将会有65536种,第五种元素将会有2^65536种。这将会是一个天文数字。
然而,上帝并没有预料到元素种类数的增长是如此的迅速。他想要让世界的元素丰富起来,因此,日复一日,年复一年,他重复地创造着新的元素……
然而不久,当上帝创造出最后一种元素“θ”时,他发现这世界的元素实在是太多了,以致于世界的容量不足,无法承受。因此在这一天,上帝毁灭了世界。
至今,上帝仍记得那次失败的创世经历,现在他想问问你,他最后一次创造的元素“θ”一共有多少种?
上帝觉得这个数字可能过于巨大而无法表示出来,因此你只需要回答这个数对p取模后的值即可。
你可以认为上帝从“α”到“θ”一共创造了\(10^9\)次元素,或\(10^{18}\)次,或者干脆\(\infty\)次
One word.
\(2^{2^{2^{....}}}mod\ p\)
Input
第一行一个整数\(T\),表示数据个数。
接下来\(T\)行,每行一个正整数\(p\),代表你需要取模的值
Output
\(T\)行,每行一个正整数,为答案对\(p\)取模后的值
直接套公式即可,证明的话目前在准备\(Noip\),将来证明.
\[a^x \equiv a^{x\ mod \ \phi(m) +\phi(m)}\ (mod \ m)
\]
所以这里递归求解即可.
求\(\phi()\)的话.我没有用线性筛求,选择了
\[\phi(x)=x \times \prod_{i=1}^{r} (1-\frac{1}{p_1})
\]
这里的\(p\)为质数.
代码
#include<cstdio>
#include<cctype>
#define R register
#define int long long
using namespace std;
inline void in(int &x)
{
int f=1;x=0;char s=getchar();
while(!isdigit(s)){if(s=='-')f=-1;s=getchar();}
while(isdigit(s)){x=x*10+s-'0';s=getchar();}
x*=f;
}
inline int phi(int x)
{
int res=x;
for(R int i=2;i*i<=x;i++)
{
if(x%i==0)
{
res=res/i*(i-1);
while(x%i==0)x/=i;
}
}
if(x>1)res=res/x*(x-1);
return res;
}
int T;
inline int ksm(int x,int y,int p)
{
int res=1;
for(;y;y>>=1,x=x*x%p)
if(y&1)res=res*x%p;
return res;
}
inline int calc(int x)
{
if(x==1)return 0;
return ksm(2,calc(phi(x))+phi(x),x);
}
signed main()
{
in(T);
for(R int x;T;T--)
{
in(x);
printf("%lld\n",calc(x));
}
}
除特殊声明外,本博客作品均由顾z创作。
未经博主允许,不得转载