DP【p2051(bzoj 1801)】 [AHOI2009]中国象棋.

题目描述

这次小可可想解决的难题和中国象棋有关,在一个N行M列的棋盘上,让你放若干个炮(可以是0个),使得没有一个炮可以攻击到另一个炮,请问有多少种放置方法。大家肯定很清楚,在中国象棋中炮的行走方式是:一个炮攻击到另一个炮,当且仅当它们在同一行或同一列中,且它们之间恰好 有一个棋子。你也来和小可可一起锻炼一下思维吧!

40pts

考试遇到了这个题,玄学打表得了\(40pts\)

玄学打表吼啊

xjb分析

正解竟然是个\(DP\)? 还有人说是状压\(DP\)?哪里来的状压啊!

前置知识

考虑到我们的合法状态的话,每一行每一列的炮的数量\(\le 2\)

(炮打隔重山?) 显然 如果一行或者一列有三个炮的话将会不合法.(两个炮可以互相打啊 qwq)

如何设状态?

因为每一行每一列的炮的数量\(\leq 2\)

所以我们考虑记数组去存储有几列放了一个炮,有几列放了两个炮.

我们又需要考虑转移?

因此设出状态

  \(f[i][j][k]\)代表放了前\(i\)行,有\(j\)列是有一个棋子,有\(k\)列是有2个棋子的合法方案数.

这个时候我们知道全部的列数,又知道一些情况的列数.

所以我们可以求出不放棋子的列数

单步容斥:空的=全部的\(-\)合法的

空的序列\(=m-j-k\)

确定情况

  1. 我们可以在当前第\(i\)行不放棋子.
  2. 我们可以在当前第\(i\)行放一个棋子
  3. 我们可以在当前第\(i\)行放两个棋子.

接下来就需要分类讨论这些情况.

分类讨论

一.不放棋子

我们可以直接继承上面的状态.即

\[f[i][j][k]=f[i-1][j][k] \]

二.放一个棋子

显然我们不会选择放在有两个棋子的列.

因此存在情况如下

\[\begin{cases}放在有一个棋子的列 f[i][j][k]+=f[i-1][j+1][k-1]\times (j+1) \\\\\\ 放在没有棋子的列 f[i][j][k]+=f[i-1][j-1][k]\times (m-(j-1)-k)\end{cases} \]

解释:
放在一个棋子的列

我们在某一个有一个棋子列放置棋子,会使这一列变为有两个棋子.

即我们要得到\(f[i][j][k]\)需要在\(j+1\)个有一个棋子的列放置棋子,变为\(j\)个有一个棋子的列

而我们又会得到一个新的有两个棋子的列.因此我们之前必须有\(k-1\)个有两个棋子的列.

\(f[i-1][j+1][k-1]\)的状态可以传递给\(f[i][j][k]\)

而我们又可以在\((j+1)\)中的任何一列放置这一个棋子.

因此我们要\(\times (j+1)\)

放在没有棋子的列

在一个没有棋子的列放置棋子,我们会得到一个新的有一个棋子的列.

即我们要从\(j-1\)得到\(j\).

而这个时候,我们有两个棋子的列的数量不会变,所以从\(k\)传递即可.

\(f[i-1][j-1][k]\)的状态可以传递给\(f[i][j][k]\)

又因为我在空列中的任何一列放置这个棋子.

所以要$\times $$(m-(j-1)-k)$

三.放两个棋子

这个时候情况会多一个.先请大家自己考虑一下.

这个时候存在情况如下

\[\begin{cases}一个放在有一个棋子的列,另一个放在没有棋子的列 f[i][j][k]+=f[i-1][j][k-1]\times j \times (m-j-(k-1)) \\\\ 都放在没有棋子的列 f[i][j][k]+=f[i-1][j-2][k]\times C_{m-(j-2)-k}^{2}\\\\ 都放在有一个棋子的列 f[i][j][k]+=f[i-1][j+2][k-2] \times C_{j+2}^{2}\end{cases} \]

解释
一个放在有一个棋子的列,一个放在没有棋子的列

这个时候,我们放置之后 :

一个没有棋子的列会变成一个有一个棋子的列,而一个有一个棋子的列会变成一个有两个棋子的列。

此时我们发现,

​ 有一个棋子的列的数量不会变,因此第二维依旧为\(j\)

​ 又因为我们会新增一个有两个棋子的列,所以我们需要从\(k-1\)转移过来.

又因为我们可以在有一个棋子的列随便放,空列随便放.

根据乘法原理,需要\(\times j \times (m-j-(k-1))\)

都放在没有棋子的列

此时我们放置之后

​ 会增加两个新的有一个棋子的列.

因此我们需要从\(j-2\)转移过来.

而两个棋子的列的数量并不会改变,所以依旧为\(k\)

又因为在空列中我们随便放.

根据组合数学,需要\(\times C_{m-(j-2)-k}^{2}\)

都放在有一个棋子的列

我们放置在有一个棋子的列之后:

​ 这两个有一个棋子的列都会变成有两个子的列.

​ 即\(j+2\)变成\(j\),从\(k-2\)变成\(k\)

又因为这些有一个棋子的列我们随便选择.

根据组合数学,需要\(\times C_{j+2}^{2}\)

分析完毕

我们需要接下来做的就是判断边界,一定要判断!!(血的教训!

代码

#include<cstdio>
#include<cstring>
#include<cmath>
#include<cctype>
#include<cstring>
#define mod 9999973
#define int long long
#define R register
using namespace std;
inline  void in(int &x)
{
	int f=1;x=0;char s=getchar();
	while(!isdigit(s)){if(s=='-')f=-1;s=getchar();}
	while(isdigit(s)){x=x*10+s-'0';s=getchar();}
	x*=f;
}
int n,m,ans;
int f[108][108][108];
inline int C(int x)
{
	return ((x*(x-1))/2)%mod;
}
signed main()
{
	in(n),in(m);
	f[0][0][0]=1;
	for(R int i=1;i<=n;i++)
	{
		for(R int j=0;j<=m;j++)
		{
			for(R int k=0;k<=m-j;k++)
			{
				f[i][j][k]=f[i-1][j][k];
				if(k>=1)(f[i][j][k]+=f[i-1][j+1][k-1]*(j+1));
				if(j>=1)(f[i][j][k]+=f[i-1][j-1][k]*(m-j-k+1));
				if(k>=2)(f[i][j][k]+=f[i-1][j+2][k-2]*(((j+2)*(j+1))/2));
				if(k>=1)(f[i][j][k]+=f[i-1][j][k-1]*j*(m-j-k+1));
				if(j>=2)(f[i][j][k]+=f[i-1][j-2][k]*C(m-j-k+2));
				f[i][j][k]%=mod;
			}
		}
	}
	for(R int i=0;i<=m;i++)
		for(R int j=0;j<=m;j++)
			(ans+=f[n][i][j])%=mod;
	printf("%lld",(ans+mod)%mod);
}
posted @ 2018-10-03 20:41  顾z  阅读(329)  评论(0编辑  收藏  举报